Vol. 81
Latest Volume
All Volumes
PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2018-02-12
A Comparative Study of Quasi-FEA Technique on Iron Losses Prediction for Permanent Magnet Synchronous Machines
By
Progress In Electromagnetics Research C, Vol. 81, 101-113, 2018
Abstract
The paper presents an advanced quasi-FEA technique on the iron losses prediction using Bertotti's iron loss separation models, in which a curve fitting is taken into account for coefficients calculation of each model. Moreover, the skin effect and saturation consideration are applied in order to check the accuracy through the relative error distribution in the frequency domain of each model from low up to high frequencies 50 to 700 (Hz). Additionally, this comparative study presents a torque-speed-flux density computation that is discussed and presented. The iron loss characteristics of a radial flux permanent magnet synchronous machine (PMSM) with closed-slots and outer rotor topology are also discussed. The quasi-finite-element (FE) analysis was performed using a 2-D and 3-D FEA, where the employed quasi-2-D FEA is proposed and compared with 3-D FEA, and along with experimental verifications. Finally, all the iron-loss models under realistic and non-ideal magnetization conditions are verified experimentally on a surface-mounted PMSG for wind generation application.
Citation
Pedram Asef, Ramon Bargallo Perpina, M. R. Barzegaran, Jianning Dong, Andrew Lapthorn, and Osama A. Mohammed, "A Comparative Study of Quasi-FEA Technique on Iron Losses Prediction for Permanent Magnet Synchronous Machines," Progress In Electromagnetics Research C, Vol. 81, 101-113, 2018.
doi:10.2528/PIERC17102702
References

1. Asef, P., "Design, characteristic analysis of PM wind generator based on SMC material for small direct-drive wind energy conversion system," International Conference on Renewable Energy Research and Application (ICRERA), Vol. 41, DOI: 10.1109/ICRERA.2014.7016437, USA, 2014.

2. Harrison, R., E. Hau, and H. Snel, Large Wind Turbines Design and Economics, Wiley, New York, 2000 (ISBN 0471-494569).

3. Dubois, M. R., "Optimized permanent magnet generator topologies for direct-drive wind tur-bines,", Ph.D. dissertation, Delft Univ. Technol., Delft, The Netherlands, 2004.

4. Grauers, A., "Design of direct-driven permanent-magnet generators for wind turbines,", Ph.D. dissertation, Chalmers Univ. Technol., Goteborg, Sweden, 1996.

5. Poore, R. and T. Lettenmaier, "Alternative design study report: Wind PACT advanced wind tur-bine drive train designs study," NREL, Golden, CO, Rep. NREL/SR-500-33196, Aug. 2003.

6. Cotrell, J. R., "A preliminary evaluation of a multiple-generator drive train configuration for wind turbines," presented at the 2002 ASME Wind Energy Symp., 40th AIAA Aerosp. Sci. Meeting Exhibit, Collection Tech. Papers, Reno, NV, Jan. 14-17, 2002.

7. Martin, F., et al. "Improved analytical determination of eddy current losses in surface mounted permanent magnets of synchronous machine," IEEE Trans. Magn., Vol. 50, No. 6, 1-8, Jun. 2014.

8. Hemeida, A., et al. "Comparison of methods for permanent magnet eddy-current loss computations with and without reaction field considerations in axial flux PMSM," IEEE Trans. Magn., Vol. 51, No. 9, 1-8, Sep. 2015.
doi:10.1109/TMAG.2015.2431222

9. Kakhki, M. T., et al. "New approach for accurate prediction of eddy current losses in laminated material in the presence of skin effect with 2-D FEA," IEEE Trans. Magn., Vol. 52, No. 3, 1-4, Mar. 2016.
doi:10.1109/TMAG.2015.2481924

10. Huang, W. Y., et al. "Optimization of magnet segmentation for reduction of eddy-current losses in permanent magnet synchronous machine," IEEE Trans. Energy Conv., Vol. 25, No. 2, 381-386, 2010.
doi:10.1109/TEC.2009.2036250

11. Steentjes, S., et al. "Iron-loss model with consideration of minor loops applied to FE-simulations of electrical machines ," IEEE Trans. Magn., Vol. 49, No. 7, 3945-3948, Jul. 2013.
doi:10.1109/TMAG.2013.2244072

12. Eggers, D., et al. "Advanced iron-loss estimation for nonlinear material behavior," IEEE Trans. Magn., Vol. 48, No. 11, 3021-3024, Nov. 2012.
doi:10.1109/TMAG.2012.2208944

13. Bertotti, G., "General properties of power losses in soft ferromagnetic materials," IEEE Trans. Magn., Vol. 24, No. 1, Jan. 1988.
doi:10.1109/20.43994

14. Bertotti, G. and M. Pasquale, "Physical interpretation of induction and frequency dependence of power losses in soft magnetic materials," IEEE Trans. Magn., Vol. 28, No. 5, Sep. 1992.
doi:10.1109/20.179704

15. Bertotti, G., et al. "An improved estimation of iron losses in rotating electrical machines," IEEE Trans. Magn., Vol. 27, No. 6, Nov. 1991.

16. Fratila, M., et al. "Iron loss calculation in a synchronous generator using finite element analysis," IEEE Tran. Energy Conv., Vol. PP, No. 99, 1-8, doi: 10.1109/TEC.2017.2648512, 2017.

17. Rasilo, P., et al. "Experimental determination and numerical evaluation of core losses in a 150-kVA wound-field synchronous machine," IET Electric Power App., Vol. 7, No. 2, 97-105, doi: 10.1049/iet-epa.2012.02422013.
doi:10.1049/iet-epa.2012.0242

18. Kowal, D., et al. "Comparison of frequency and time-domain iron and magnet loss modeling including PWM harmonics in a PMSG for a wind energy application," IEEE Trans. Energy Conversion, Vol. 30, No. 2, 476-486, 2015.
doi:10.1109/TEC.2014.2373312

19. Pfingsten, G. V., et al. "Operating point resolved loss calculation approach in saturated induction machines," IEEE Trans. Ind. Electr., Vol. 64, No. 3, 2538-2546, 2017.
doi:10.1109/TIE.2016.2597761

20. Boglietti, A., A. Cavagnino, M. Lazzari, and M. Pastorelli, "Predicting iron losses in soft mag-netic materials with arbitrary voltage supply: An engineering approach," IEEE Trans. Magn., Vol. 39, No. 2, 981-989, 2003.
doi:10.1109/TMAG.2003.808599

21. Krings, A. and J. Soulard, "Overview and comparison of iron loss models for electrical ma-chines," Journal of Electrical Engineering, Vol. 10, No. 3, 162-169, 2010.

22. Ionel, D. M., M. Popescu, S. J. Dellinger, T. J. E. Miller, R. J. Heideman, and M. I. McGilp, "On the variation with flux and frequency of the core loss coefficients in electrical machines," IEEE Trans. Ind. Appl., Vol. 42, No. 3, 658-667, May 2006.
doi:10.1109/TIA.2006.872941

23. Ionel, D. M., M. Popescu, M. I. McGilp, T. J. E. Miller, S. J. Dellinger, and R. J. Heideman, "Computation of core losses in electrical machines using improved models for laminated steel," IEEE Trans. Ind. Appl., Vol. 43, No. 6, 1554-1564, Nov. 2007.
doi:10.1109/TIA.2007.908159

24. Huang, Y., J. Dong, J. G. Zhu, and Y. Guo, "Core loss modeling for permanent-magnet motor based on flux variation locus and finite-element method ," IEEE Trans. Magn., Vol. 48, No. 2, 1023-1026, 2012.
doi:10.1109/TMAG.2011.2174201

25. Gerlando, A. D. and R. Perini, "Evaluation of the effects of the voltage harmonics on the extra iron losses in the inverter fed electromagnetic devices," IEEE Trans. on Energy Conv., Vol. 14, No. 1, 57-62, Mar. 1999.
doi:10.1109/60.749148

26. Lasdon, L. S., et al. "Design and testing of a generalized reduced gradient code for nonlinear optimization," Case Western Reserve University, National Technical Information Service U.S. Department of Commerce (NTIS), AD-A009-402, 1-45, Mar. 1975.