1. Munk, B. A., Frequency Selective Surfaces: Theory and Design, Wiley, 2000.
doi:10.1002/0471723770
2. Chaharmir, M. R. and J. Shaker, "Design of a multilayer X-/Ka-band frequency-selective surface-backed reflectarray for satellite applications," IEEE Trans. Antennas Propag., Vol. 63, 1255-1262, 2015.
doi:10.1109/TAP.2015.2389838 Google Scholar
3. Boccia, L., I. Russo, G. Amendola, and G. Di Massa, "Tunable frequency-selective surfaces for beam-steering applications," Electronics Letters, Vol. 45, 1213-1215, 2009.
doi:10.1049/el.2009.2577 Google Scholar
4. Sivasamy, R., M. Kanagasabai, et al. "A novel shield for GSM 1800 MHz band using frequency selective surface," Progress In Electromagnetics Research Letters, Vol. 38, 193-199, 2013.
doi:10.2528/PIERL13022206 Google Scholar
5. Ghosh, S. and K. V. Srivastava, "An equivalent circuit model of FSS-based metamaterial absorber using coupled line theory," IEEE Antennas Wireless. Propag. Lett., Vol. 14, 511-514, 2015.
doi:10.1109/LAWP.2014.2369732 Google Scholar
6. Zheng, J. and S. J. Fang, "A new method for designing low RCS patch antenna using frequency selective surface," Progress In Electromagnetics Research Letters, Vol. 58, 125-131, 2016.
doi:10.2528/PIERL15122702 Google Scholar
7. Joozdani, M. Z., M. K. Amirhosseini, and A. Abdolali, "Wideband radar cross-section reduction of patch array antenna with miniaturized hexagonal loop frequency selective surface," Electronics Letters, Vol. 52, 767-768, 2016.
doi:10.1049/el.2016.0336 Google Scholar
8. Xie, D., X. Liu, H. Guo, et al. "Wideband absorber with multi-resonant gridded-square FSS for antenna RCS reduction," IEEE Antennas Wireless. Propag. Lett., Vol. 16, 629-632, 2017.
doi:10.1109/LAWP.2016.2594213 Google Scholar
9. Edalati, A. and K. Sarabandi, "Reflectarray antenna based on grounded loop-wire miniaturized element frequency selective surfaces," Microwaves Antennas & Propagation IET, Vol. 8, 973-979, 2014.
doi:10.1049/iet-map.2013.0432 Google Scholar
10. Liu, X., Q. Wang, W. Zhang, et al. "On the improvement of angular stability of the 2nd-order miniaturized FSS structure," IEEE Antennas Wireless. Propag. Lett., Vol. 15, 826-829, 2016.
doi:10.1109/LAWP.2015.2476384 Google Scholar
11. Rahmati, B. and H. R. Hassani, "Multiband metallic frequency selective surface with wide range of band ratio," IEEE Trans. Antennas Propag., Vol. 63, 3747-3753, 2015.
doi:10.1109/TAP.2015.2438340 Google Scholar
12. Lee, I. G. and I. P. Hong, "3D frequency selective surface for stable angle of incidence," Electronics Letters, Vol. 50, 423-424, 2014.
doi:10.1049/el.2014.0053 Google Scholar
13. Li, B. and Z. X. Shen, "Miniaturized bandstop frequency-selective structure using stepped impedance resonators," IEEE Antennas Wireless. Propag. Lett., Vol. 12, 1112-1115, 2012. Google Scholar
14. Hussain, T., Q. Cao, J. Kayani, et al. "Miniaturization of frequency selective surfaces using 2.5-dimensional knitted structures: Design and synthesis," IEEE Trans. Antennas Propag., Vol. 65, 2405-2412, 2017.
doi:10.1109/TAP.2017.2673809 Google Scholar
15. Azemi, G. W., "Angularly stable frequency selective surface with miniaturized unit cell," IEEE Microwave & Wireless Components Lett., Vol. 25, 454-456, 2015.
doi:10.1109/LMWC.2015.2429126 Google Scholar
16. Zhao, Z., H. Shi, J. Guo, et al. "A stop-band frequency selective surface with ultra-large angle of incidence," IEEE Antennas Wireless. Propag. Lett., Vol. 16, 553-556, 2017.
doi:10.1109/LAWP.2016.2588528 Google Scholar