1. International Commission on Non-Ionizing Radiation Protection (ICNIRP) "Guidelines for limiting exposure to time varying electric, magnetic, and electromagnetic fields," Health Physics, Vol. 74, 494-522, 1998. Google Scholar
2. Rubtsova, N., S. Perov, O. Belaya, et al. "Near-eld radiofrequency electromagnetic exposure assessment," Electromagnetic Biology and Medicine, Vol. 34, No. 3, 180-182, 2015.
doi:10.3109/15368378.2015.1076444 Google Scholar
3. Maher, B. A., I. A. M. Ahmed, V. Karloukovski, et al. "Magnetite pollution nanoparticles in the human brain," Proc. Natl. Acad. Sci. USA, Vol. 113, No. 39, 10797-10801, 2016.
doi:10.1073/pnas.1605941113 Google Scholar
4. Kirschvink, J. L., A. Kobayashi-Kirschvink, and B. J. Woodford, "Magnetite biomineralization in the human brain," Proc. Natl. Acad. Sci. USA, Vol. 89, No. 16, 7683-7687, 2009.
doi:10.1073/pnas.89.16.7683 Google Scholar
5. Kirschvink, J. L., "Microwave absorption by magnetite: A possible mechanism for coupling nonthermal levels of radiation to biological systems," Bioelectromagnetics, Vol. 17, No. 3, 187-194, 1996.
doi:10.1002/(SICI)1521-186X(1996)17:3<187::AID-BEM4>3.0.CO;2-# Google Scholar
6. Strbak, O., P. Kopcansky, and I. Frollo, "Biogenic magnetite in humans and new magnetic resonance hazard questions," Meas. Sci. Rev., Vol. 11, No. 3, 85-91, 2011.
doi:10.2478/v10048-011-0014-1 Google Scholar
7. Ueno, S., "Studies on magnetism and bioelectromagnetics for 45 years: From magnetic analog memory to human brain stimulation and imaging," Bioelectromagnetics, Vol. 33, 3-22, 2012.
doi:10.1002/bem.20714 Google Scholar
8. Chen, L., C. Chen, P. Wang, et al. "Mechanisms of cellular effects directly induced by magnetic nanoparticles under magnetic fields," Hindawi. J. Nanomat., Vol. 2017, ID 1564634, 2017. Google Scholar
9. Binhi, V. N. and F. S. Prato, "A physical mechanism of magnetoreception: Extension and analysis," Bioelectromagnetics, Vol. 38, 41-52, 2017.
doi:10.1002/bem.22011 Google Scholar
10. Hergt, R., S. Dutz, R. Muller, et al. "Magnetic particle hyperthermia: Nanoparticle magnetism and materials development for cancer therapy," J. Phys.: Cond. Matt., Vol. 18, S2919-S2934, 2006.
doi:10.1088/0953-8984/18/38/S26 Google Scholar
11. Blaney, L., "Magnetite (Fe3O4): Properties, synthesis, and applications," Lehigh Review, Preserve 15, paper 5, Lehigh University, 2007. Google Scholar
12. Strbak, O., P. Kopcansky, M. Timko, et al. "Single biogenic magnetite nanoparticle physical characteristics | A biological impact study (for MagMeet 2012 participants)," IEEE Trans. Mag., Vol. 49, 457-462, 2013.
doi:10.1109/TMAG.2012.2223201 Google Scholar
13. Giere, R., "Magnetite in the human body: Biogenic vs. anthropogenic," Proc. Natl. Acad. Sci. USA, Vol. 113, No. 43, 11986-11987, 2016.
doi:10.1073/pnas.1613349113 Google Scholar
14. Gorobets, O., S. Gorobets, and M. Koralewski, "Physiological origin of biogenic magnetic nanoparticles in health and disease: From bacteria to humans," Int. J. Nanomed., Vol. 12, 4371-4395, 2017.
doi:10.2147/IJN.S130565 Google Scholar
15. Cespedes, O. and S. Ueno, "Effects of radio frequency magnetic elds on iron release from cage proteins," Bioelectromagnetics, Vol. 30, 336-342, 2009.
doi:10.1002/bem.20488 Google Scholar
16. Carrubba, S., C. Frilot, A. L. Chesson, Jr., et al. "Evidence of a nonlinear human magnetic sense," Neurosci., Vol. 144, 356-367, 2007.
doi:10.1016/j.neuroscience.2006.08.068 Google Scholar
17. Carrubba, S., C. Frilot, A. L. Chesson, Jr., et al. "Numerical analysis of recurrence plots to detect effect of environmental-strength magnetic elds on human brain electrical activity," Med. Eng. Phys., Vol. 32, No. 8, 898-907, 2010.
doi:10.1016/j.medengphy.2010.06.006 Google Scholar
18. Hinrikus, H., M. Bachmann, J. Laas, et al. "Effect of 7, 14 and 21 Hz modulated 450MHz microwave radiation on human electroencephalographic rhythms," Int. J. Rad. Biol., Vol. 84, No. 1, 69-79, 2008.
doi:10.1080/09553000701691679 Google Scholar
19. Suhhova, A., M. Bachmann, D. Karai, et al. "Effect of microwave radiation on human EEG at two different levels of exposure," Bioelectromagnetics, Vol. 34, 264-274, 2013.
doi:10.1002/bem.21772 Google Scholar
20. Hinrikus, H., M. Bachmann, D. Karai, et al. "Mechanism of low-level microwave radiation effect on nervous system," Electromag. Biol. Med., Vol. 36, No. 2, 202-212, 2017.
doi:10.1080/15368378.2016.1251451 Google Scholar
21. Miclaus, S., M. Racuciu, and P. Bechet, "H-eld contribution to the electromagnetic energy deposition in tissues similar to the brain but containing ferrimagnetic particles, during use of face-held radio transceivers," Progress In Electromagnetics Research B, Vol. 73, 49-60, 2017.
doi:10.2528/PIERB17010101 Google Scholar
22. Schmid, M. R., M. Murbach, C. Lustenberger, et al. "Sleep EEG alterations: Effects of pulsed magnetic elds versus pulse-modulated radio frequency electromagnetic fields," J. Sleep. Res., Vol. 21, No. 6, 620-629, 2012.
doi:10.1111/j.1365-2869.2012.01025.x Google Scholar
23. Busquets, M. A., A. Espargaro, R. Sabate, et al. "Magnetic nanoparticles cross the blood-brain barrier: When physics rises to a challenge," Nanomat., Vol. 5, 2231-2248, 2015.
doi:10.3390/nano5042231 Google Scholar
24. Nittby, H., A. Brun, S. Stromblad, et al. "Nonthermal GSM RF and ELF EMF effects upon rat BBB permeability," Environmentalist, Vol. 31, No. 2, 140-148, 2011.
doi:10.1007/s10669-011-9307-z Google Scholar
25. Salford, L. G., H. Nittby, and B. R. R. Persson, "Effects of electromagnetic elds from wire- less communication upon the blood-brain barrier," Bioinitiative 2012: A Rationale for Biologically-Based Exposure Standards for Low-Intensity Electromagnetic Radiation (Section 10), Sage, C. and Carpenter, D. O. (eds.), Available from: http://www.bioinitiative.org/ report/wp-content/uploads/pdfs/sec10 2012 Effects Electromagnetic Fields Wireless Communication.pdf, 2012. Google Scholar
26. Deatsch, E. A. and B. A. Evans, "Heating efficiency in magnetic nanoparticle hyperthermia," J. Mag. Mag. Mat., Vol. 354, 163-172, 2014.
doi:10.1016/j.jmmm.2013.11.006 Google Scholar
27. Ma, M., Y. Wu, J. Zhou, et al. "Size dependence of specic power absorption of Fe3O4 particles in AC magnetic eld," J. Mag. Mag. Mat., Vol. 268, 33-39, 2004.
doi:10.1016/S0304-8853(03)00426-8 Google Scholar
28. Jazirehpour, M. and S. A. Seyyed Ebrahimi, "Effect of aspect ratio on dielectric, magnetic, percolative and microwave absorption properties of magnetite nanoparticles," J. Alloys Comp., Vol. 638, 188-196, 2015.
doi:10.1016/j.jallcom.2015.03.021 Google Scholar
29. Khurshid, H., J. Alonso, Z. Nemati, et al. "Anisotropy effects in magnetic hyperthermia: A comparison between spherical and cubic exchange-coupled FeO/Fe3O4 nanoparticles," J. Appl. Phys., Vol. 117, 17A337, 2015.
doi:10.1063/1.4919250 Google Scholar
30. Vasilakaki, M., C. Binns, and K. N. Trohidou, "Susceptibility losses in heating of magnetic core/shell nanoparticles for hyperthermia: A Monte Carlo study of shape and size effects," Nanoscale, Vol. 7, No. 17, 7753-7762, 2015.
doi:10.1039/C4NR07576E Google Scholar
31. Shubitidze, F., K. Kekalo, R. Stigliano, et al. "Magnetic nanoparticles with high specic absorption rate of electromagnetic energy at low eld strength for hyperthermia therapy," J. Appl. Phys., Vol. 117, No. 9, 094302, 2015.
doi:10.1063/1.4907915 Google Scholar
32. Jazirehpour, M. and S. A. Seyyed Ebrahimi, "Synthesis of magnetite nanostructures with complex morphologies and effect of these morphologies on magnetic and electromagnetic properties," Ceramics Int., Vol. 42, 16512-16520, 2016.
doi:10.1016/j.ceramint.2016.07.067 Google Scholar
33. Liu, X., K. Cao, Y. Chen, et al. "Shape-dependent magnetic and microwave absorption properties of iron oxide nanocrystals," Mat. Chem. Phys., Vol. 192, 339-348, 2017.
doi:10.1016/j.matchemphys.2017.02.012 Google Scholar
34. Dolnik, B., M. Rajnak, R. Cimbala, et al. "The response of a magnetic uid to radio frequency electromagnetic eld," Acta Phys. Pol. A, Vol. 131, No. 4, 946-948, 2017.
doi:10.12693/APhysPolA.131.946 Google Scholar
35. Marin, C. N., I. Malaescu, and P. C. Fannin, "Theoretical evaluation of the heating rate of ferrofluids," J. Therm. Anal. Calorim., Vol. 119, No. 2, 1199-1203, 2014.
doi:10.1007/s10973-014-4224-2 Google Scholar
36. Attar, M. M. and M. Haghpanahi, "Effect of heat dissipation of superparamagnetic nanoparticles in alternating magnetic eld on three human cancer cell lines in magnetic uid hyperthermia," Electromag. Biol. Medicine, Vol. 35, No. 4, 305-320, 2016.
doi:10.3109/15368378.2015.1089409 Google Scholar
37. Skumiel, A., M. Kaczmarek-Klinowska, M. Timko, et al. "Evaluation of power heat losses in multidomain iron particles under the influence of ac magnetic field in RF range," Int. J. Thermophys., Vol. 34, 655-666, 2013.
doi:10.1007/s10765-012-1380-0 Google Scholar
38. Fannin, P. C., I. Malaescu, C. N. Marin, et al. "Microwave specic loss power of magnetic uids subjected to a static magnetic eld," Eur. Phys. J. E, Vol. 27, 145-148, 2008.
doi:10.1140/epje/i2008-10362-y Google Scholar
39. Fannin, P. C., I. Malaescu, C. N. Marin, et al. "Microwave propagation parameters in magnetic fluids," Eur. Phys. J. E, Vol. 29, 299-303, 2009.
doi:10.1140/epje/i2009-10477-7 Google Scholar
40. Malaescu, I., C. N. Marin, M. Bunoiu, et al. "The effect of particle concentration on the heating rate of ferrofluids for magnetic hyperthermia," Annals of West University of Timisoara --- Physics, Vol. 58, No. 1, 81-88, 2015.
doi:10.1515/awutp-2015-0210 Google Scholar
41. Yun, H., X. Liu, T. Paik, et al. "Size- and composition dependent radio frequency magnetic permeability of iron oxide nanocrystals," American Chem. Soc. Nano, Vol. 8, No. 12, 12323-12337, 2014. Google Scholar