Vol. 70
Latest Volume
All Volumes
PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-07-06
A Compact-Integrated Recon Gurable Rectenna Array for RF Power Harvesting with a Practical Physical Structure
By
Progress In Electromagnetics Research M, Vol. 70, 89-98, 2018
Abstract
This paper presents the design of a compact-integrated reconfigurable rectenna array containing 2x2 compact microstrip patch antennas based on a fractal model with the rectifier circuit integrated into the same physical structure and usable in practical conditions. In this array configuration, four rectennas were mounted in a planar structure with total dimensions of 85x85 mm using FR-4 dielectric and with recon gurable DC output that was tested in three ways: series-association, parallel-association and series-parallel association. In the series-association the rectenna array was able to generate the DC power that reached 6.51 V and maximum efficiency of 64.5%; in the parallel-association it generated the DC power that reached 1.58 V and maximum efficiency of 65.3%; in series-parallel-association it generated the DC power that reached 3.00 V and maximum efficiency of 64.5%. The results showed that rectennas in array configuration are feasible to be used as power supplies to electronic devices in real situations.
Citation
Euclides Lourenço Chuma, Yuzo Iano, Mathias Scroccaro Costa, Leandro Tiago Manera, and Leonardo Lorenzo Bravo Roger, "A Compact-Integrated Recon Gurable Rectenna Array for RF Power Harvesting with a Practical Physical Structure," Progress In Electromagnetics Research M, Vol. 70, 89-98, 2018.
doi:10.2528/PIERM18032501
References

1. Brown, W. C., "The history of power transmission by radio waves," IEEE Consumer Electronics Magazine, Vol. 32, 9, 1230-1242, 1984.

2. Khemar, A., A. Kacha, H. Takhedmit, and G. Abib, "Design and experiments of a dual-band rectenna for ambient RF energy harvesting in urban environments," IET Microwaves, Antennas & Propagation, Vol. 12, No. 1, 49-55, 2018.
doi:10.1049/iet-map.2016.1040

3. Lu, P., X.-S. Yang, and B.-Z. Wang, "A two-channel frequency reconfigurable rectenna for microwave power transmission and data communication," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 12, 2017.
doi:10.1109/TAP.2017.2766450

4. Lee, D.-J., S.-J. Lee, I.-J. Hwang, W.-S. Lee, and J.-W. Yu, "Hybrid power combining rectenna array for wide incident angle coverage in RF energy transfer," IEEE Transactions on Microwave Theory and Techniques, Vol. 65, No. 9, 2017.

5. Carvalho, N. B., A. Georgiadis, A. Costanzo, et al. "Critical review on smart clothing product development," IEEE Transactions on Microwave Theory and Techniques, Vol. 62, No. 4, 2014.

6. Hamani, A., B. Allard, T.-P. Vuong, et al. "Design of rectenna series-association circuits for radio frequency energy harvesting in CMOS FD-SOI 28 nm," IET Circuits, Devices & Systems, Vol. 12, No. 1, 40-49, 2018.
doi:10.1049/iet-cds.2017.0119

7. Chuma, E. L., L. de la T. Rodrguez, Y. Iano, L. L. Bravo Roger, and M. A. Sanchez-Soriano, "Compact rectenna based on a fractal geometry with a high conversion energy efficiency per area," IET Microwaves, Antennas & Propagation, Vol. 12, No. 2, 173-178, 2018.
doi:10.1049/iet-map.2016.1150

8. Ladan, S., N. Ghassemi, A. Ghiotto, and K. Wu, "Highly efficient compact rectenna for wireless energy harvesting application," IEEE Microwave Magazine, 117-122, 2013.
doi:10.1109/MMM.2012.2226629

9. Valenta, C. R. and G. D. Durgin, "Harvesting wireless power: survey of energy-harvester conversion efficiency in far-field wireless power transfer systems," IEEE Microwave Magazine, 108-120, 2014.

10. Olgun, U., C.-C. Chen, and J. L. Volakis, "Investigation of rectenna array configurations for enhanced RF power harvesting," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 262-265, 2011.
doi:10.1109/LAWP.2011.2136371

11. Hagerty, A., F. B. Helmbrecht, W. H. McCalpin, R. Zane, and Z. B. Popovic, "Recycling ambient microwave energy with broad-band rectenna arrays," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 3, 2004.
doi:10.1109/TMTT.2004.823585

12. Zbitou, J., M. Latrach, and S. Toutain, "Hybrid rectenna and monolithic integrated zero-bias microwave rectifier," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 1, 2006.
doi:10.1109/TMTT.2005.860509

13. Gianvittorio, J. P. and Y. Rahmat-Samii, "Fractal antennas: A novel antenna miniaturization technique, and applications," IEEE Antennas and Propagation Magazine, Vol. 44, 20-36, 2002.
doi:10.1109/74.997888

14. Falkenstein, E., M. Roberg, and Z. Popovic, "Low-power wireless power delivery," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 7, 2012.
doi:10.1109/TMTT.2012.2193594

15. Pozar, D. M., "Input impedance and mutual coupling of rectangular microstrip antennas," IEEE Transactions on Antennas and Propagation, Vol. 30, No. 6, 1982.
doi:10.1109/MAP.1982.27619