Vol. 70
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-06-30
Improvement of Antenna System of Interferometric Microwave Imager on WCOM
By
Progress In Electromagnetics Research M, Vol. 70, 33-40, 2018
Abstract
The interferometric synthetic aperture microwave imager (IMI) on WCOM is a onedimensional L/S/C tri-frequency microwave radiometer aiming to improve the measurement capability on soil moisture and ocean salinity. An IMI antenna system mainly consists of a parabolic cylinder reflector and a tri-frequency linear patch feed array. At present, an L-band ground prototype with a solid reflector and an 8-element feeds array is completed, with the imaging feasibility being verified by experimental results. In order to improve radiometer performance, this paper presents an improved antenna system, which is dedicated to the next generation of interferometric microwave imager prototype. Improvements made for the antenna system mainly include using deployable mesh reflector and increasing feeds. Simulation results of image reconstruction in viewing a series of near real case ocean brightness temperature maps are used to quantitatively compare and analyze imaging performances of the two L-band IMI prototype antenna systems.
Citation
Aili Zhang Hao Liu Xue Chen Lijie Niu Cheng Zhang Ji Wu , "Improvement of Antenna System of Interferometric Microwave Imager on WCOM," Progress In Electromagnetics Research M, Vol. 70, 33-40, 2018.
doi:10.2528/PIERM18041604
http://www.jpier.org/PIERM/pier.php?paper=18041604
References

1. Shi, J., et al., "Snow water equivalent monitoring from dual-frequency scatterometer on WCOM," 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 1359-1362, Fort Worth, TX, 2017.

2. Liu, H., et al., "IMI (Interferometric Microwave Imager): A L/S/C tri-frequency radiometer for Water Cycle Observation Mission(WCOM)," 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 3445-3447, Beijing, 2016.
doi:10.1109/IGARSS.2016.7729890

3. Corbella, I., et al., "MIRAS calibration and performance: Results from the SMOS in-orbit commissioning phase," IEEE Transactions on Geoscience and Remote Sensing, Vol. 49, No. 9, 3147-3155, Sept. 2011.
doi:10.1109/TGRS.2010.2102769

4. Le Vine, D. M., G. S. E. Lagerloef, F. R. Colomb, S. H. Yueh, and F. A. Pellerano, "Aquarius: An instrument to monitor sea surface salinity from space," IEEE Transactions on Geoscience and Remote Sensing, Vol. 45, No. 7, 2040-2050, Jul. 2007.
doi:10.1109/TGRS.2007.898092

5. Piepmeier, J. R., et al., "SMAP L-BAND MICROWAVE RADIOMETEr: Instrument design and first year on orbit," IEEE Transactions on Geoscience and Remote Sensing, Vol. 55, No. 4, 1954-1966, Apr. 2017.
doi:10.1109/TGRS.2016.2631978

6. Niu, L., H. Liu, L. Wu, and J. Wu, "Experimental study of an L-band synthetic aperture radiometer for ocean salinity measurement," 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) , 418-421, Beijing, 2016.
doi:10.1109/IGARSS.2016.7729103

7. Zhang, A., H. Liu, J. Wu, and L. Wu, "Antenna pattern error calibration for L-band synthetic aperture radiometer," 2017 IEEE International Geoscience and Remote Sensing Symposium 2017 IEEE International Geoscience and Remote Sensing Symposium, 500-503, Fort Worth, TX, 2017.

8. Martin-Neira, M., et al., "SMOS instrument performance and calibration after six years in orbit," Remote Sensing of Environment, Vol. 180, No. 8, 19-39, 2016.
doi:10.1016/j.rse.2016.02.036

9. Corbella, I., F. Torres, L.Wu, N. Duffo, I. Duran, and M. Martin-Neira, "Spatial biases analysis and Spatial biases analysis and," 2013 IEEE International Geoscience and Remote Sensing 2013 IEEE International Geoscience and Remote Sensing, 3415-3418, Melbourne, VIC, 2013.

10. Martin-Neira, M., M. Suess, J. Kainulainen, and F. Martin-Porqueras, "The flat target transformation," IEEE Transactions on Geoscience and Remote Sensing, Vol. 46, No. 3, 613-620, Mar. 2008.
doi:10.1109/TGRS.2008.916259

11. Ruf, C. S., C. T. Swift, A. B. Tanner, and D. M. Le Vine, "Interferometric synthetic aperture microwave radiometry for the remote sensing of the Earth," IEEE Transactions on Geoscience and Remote Sensing, Vol. 26, No. 5, 597-611, Sept. 1988.
doi:10.1109/36.7685