Vol. 69
Latest Volume
All Volumes
PIERM 137 [2026] PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-05-30
Particle-in-Cell Simulation of a 5 kW Hall Thruster
By
Progress In Electromagnetics Research M, Vol. 69, 51-60, 2018
Abstract
This paper aims to study the plasma discharge process of a 5 kW hall thruster developed by Lanzhou Institute of Physics and to provide the knowledge for implementing an improved thruster design. A 2D Particle-In-Cell (PIC) model is built, in which the electron-electron and electron-ion Coulomb collisions are included, in addition to the elastic, excitation, and ionization collisions between electrons and neutral atoms, and the elastic and charge-collisions between ions and neutral atoms. Different Bohm diffusion coefficients are applied in different regions to simulate the Bohm diffusion. The deviation between the simulated and experimental results of the thruster performance is within 15%, validating the accuracy of the model indirectly. The discharge process including the transient and steady-state oscillations is well reproduced. The character of the plasma during different phase of the discharge process including the plasma density and ionization rate is simulated and analyzed. Finally, the probable factor causing the anode erosion is determined.
Citation
Le Yang, Lianjun Jia, Tianping Zhang, and Juanjuan Chen, "Particle-in-Cell Simulation of a 5 kW Hall Thruster," Progress In Electromagnetics Research M, Vol. 69, 51-60, 2018.
doi:10.2528/PIERM18041706
References

1. Huang, W. and A. D. Gallimore, "A low-cost optical approach to evaluate the life time of hall thruster discharge channel," 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, AIAA-2012-4035, Atlanta, Georgia, July 30-August 1, 2012.        Google Scholar

2. Mikellides, I. G. and I. Katz, "Numerical simulations of Hall-effect plasma accelerators on a magnetic-field-aligned mesh," Phys. Rev. E, Vol. 86, 046703, 2012.
doi:10.1103/PhysRevE.86.046703        Google Scholar

3. Parra, F. I., E. Ahedo, J. M. Fife, and M. Martinez-Sanchez, "A two-dimensional hybrid model of the Hall thruster discharge," J. Appl. Phys., Vol. 100, 023304, 2006.
doi:10.1063/1.2219165        Google Scholar

4. Szabo, J., N. Warner, M. Martinez-Sanchez, and O. Batishchev, "Full particle-in-cell simulation methodology for axisymmetric hall effect thrusters," Journal of Propulsion and Power, Vol. 30, No. 1, 197-208, 2015.
doi:10.2514/1.B34774        Google Scholar

5. Yokota, S., K. Komurasaki, and Y. Arakawa, "Plasma density fluctuation inside a hollow anode in an anode-layer Hall thruster," AIAA Meeting Papers on DISC-CD ROM Edition; Joint Propulsion Conference & Exhibit AIAA, AIAA Paper 2006-5170, 2006.        Google Scholar

6. Takao, Y., H. Koizumi, K. Komurasaki, K. Eriguchi, and K. Ono, "Three-dimen-sional particle-in-cell simulation of a miniature plasma source for a microwave discharge ion thruster," Plasma Sources Sci. Technol., Vol. 23, 064004, 2014.
doi:10.1088/0963-0252/23/6/064004        Google Scholar

7. Hofer, R. R., I. Katz, I. G. Mikellides, D. M. Goebel, and K. K. Jameson, "Efficacy of electron mobility models in hybrid-PIC Hall thruster simulations," 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, AIAA 2008-4924, Hartford, CT, July 21-23, 2008.        Google Scholar

8. Meezan, N. B., W. A. Hargus, and M. A. Cappelli, "Anomalous electron mobility in a coaxial hall discharge plasma," Phys. Rev. E, Vol. 63, 026410, 2001.
doi:10.1103/PhysRevE.63.026410        Google Scholar

9. Ahedo, E., J. M. Gallardo, and M. Martinez-Sanchez, "Model of the plasma discharge in a Hall thruster with heat conduction," Physics of Plasmas, Vol. 9, No. 9, 4061-4070, 2002.
doi:10.1063/1.1499496        Google Scholar

10. Cho, S., K. Komurasaki, and Y. Arakawa, "Kinetic particle simulation of discharge and wall erosion of a Hall thruster," Physics of Plasmas, Vol. 20, No. 6, 063501, 2013.
doi:10.1063/1.4810798        Google Scholar

11. Cho, S., H. Watanabe, and K. Kubota, "Study of electron transport in a Hall thruster by axial-radial fully kinetic particle simulation," Physics of Plasmas, Vol. 22, 103523, 2015.
doi:10.1063/1.4935049        Google Scholar

12. Birdsall, C. K. and A. B. Langdon, Plasma Physics via Computer Simulation, Institute of Physics Publishing, 1991.
doi:10.1887/0750301171

13. Hofer, R. R. and I. G. Mikellides, "Wall sheath and electron mobility modeling in hybrid-PIC hall thruster simulations," 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, AIAA-2007-52-67, Cincinnati, OH, July 8-11, 2007.        Google Scholar

14. Meezan, N., W. Hargus, and M. Cappelli, "Anomalous electron mobility in a coaxial hall discharge plasma," Physical Review E, Vol. 63, No. 2, Paper 026410, 2001.        Google Scholar

15. Choueiri, E. Y., "Plasma oscillations in Hall thrusters," Physics of Plasmas, Vol. 8, No. 4, 1354644, 2001.
doi:10.1063/1.1354644        Google Scholar

16. Boeul, J. P. and L. Garrigues, "Low frequency oscillation in a stationary plasma thruster," Journal of Applied Physics, Vol. 84, No. 7, 3541-3554, 1998.
doi:10.1063/1.368529        Google Scholar

17. Barral, S. and E. Ahedo, "Low-frequency model of breathing oscillations in Hall discharges," Physical Review E, Vol. 79, 046401, 2009.
doi:10.1103/PhysRevE.79.046401        Google Scholar

18. Haas, J. M. and A. D. Gallimore, "Internal plasma potential profiles in a laboratory-model Hall thruster," Physics of Plasmas, Vol. 8, 652, 2001.
doi:10.1063/1.1338535        Google Scholar