Vol. 70
Latest Volume
All Volumes
PIERM 137 [2026] PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-07-15
Tracking Unknown Number of Stealth Targets in a Multi-Static Radar with Unknown Receiver Detection Profile Using RCS Model
By
Progress In Electromagnetics Research M, Vol. 70, 145-155, 2018
Abstract
The reliable detection of geometrically-based stealth targets using a conventional single sensor radar system may be extremely difficult. This is because low Radar Cross Section (RCS) from certain angles results in a low Signal to Noise Ratio (SNR). In the present work, multi-target tracking of stealth targets is investigated in a multi-static radar with passive receivers. The Directions of Arrival (DOA) of targets are estimated by the receivers without knowing the number of targets, and their positions are obtained based on the transmitter beam direction. The B2 bomber aircraft model has been used as a stealth target. The RCS of the model has been simulated for all collection of incident and reflected angles from an oblique impinging plane wave. Probability of Detection (Pd) is modeled using a Toeplitz-based method for different SNRs due to different RCS patterns and is fed to an Iterated Corrected Probability Hypothesis Density (IC-PHD) filter. In spite of considering the transmitter and receivers resolution in our input data generation, the proposed algorithm is able to track the targets individually when they are much close to or even cross each other. Simulation results show the improved performance of the proposed method compared to other existing approaches.
Citation
Amin Razmi, Mohammad Ali Masnadi-Shirazi, and Alireza Masnadi-Shirazi, "Tracking Unknown Number of Stealth Targets in a Multi-Static Radar with Unknown Receiver Detection Profile Using RCS Model," Progress In Electromagnetics Research M, Vol. 70, 145-155, 2018.
doi:10.2528/PIERM18041802
References

1. Pulford, G., "Taxonomy of multiple target tracking methods," IEE Proceedings --- Radar, Sonar and Navigation, Vol. 152, No. 5, 291, 2005.
doi:10.1049/ip-rsn:20045064        Google Scholar

2. Khaleghi, B., A. Khamis, F. Karray, and S. Razavi, "Multisensor data fusion: A review of the state-of-the-art," Information Fusion, Vol. 14, No. 1, 28-44, 2013.
doi:10.1016/j.inffus.2011.08.001        Google Scholar

3. Vo, B.-N., M. Mallick, Y. Bar-Shalom, S. Coraluppi, R. Osborne III, R. Mahler, and B.-T. Vo, "Multitarget tracking," Wiley Encyclopedia of Electrical and Electronics Engineering, Wiley, Sep. 2015.        Google Scholar

4. Bar-Shalom, Y., X. Tian, and P.Willett, Tracking and Data Fusion, YBS Publishing, Storrs, Conn., 2011.

5. Blackman, S. and R. Popoli, Design and Analysis of Modern Tracking Systems, Artech House, Boston, 1999.

6. Mahler, R., Statistical Multisource-multitarget Information Fusion, Artech House, Boston, 2007.

7. Mahler, R., Advances in Statistical Multisource-multitarget Information Fusion, Artech House, 2014.

8. Uney, M., D. Clark, and S. Julier, "Distributed fusion of PHD filters via exponential mixture densities," IEEE Journal of Selected Topics in Signal Processing, Vol. 7, No. 3, 521-531, 2013.
doi:10.1109/JSTSP.2013.2257162        Google Scholar

9. Mahler, R., "Multi-target Bayes filtering via first-order multi-target moments," IEEE Trans. Aerosp. Electron. Syst., Vol. 39, No. 4, 1152-1178, Oct. 2003.
doi:10.1109/TAES.2003.1261119        Google Scholar

10. Mahler, R., "PHD filters of higher order in target number," IEEE Trans. Aerosp. Electron. Syst., Vol. 43, No. 4, 1523-1543, 2007.
doi:10.1109/TAES.2007.4441756        Google Scholar

11. Nannuru, S., M. Coates, M. Rabbat, and S. Blouin, "General solution and approximate implementation of the multisensor multitarget CPHD filter," Proc. IEEE ICASSP-15, 4055-4059, Brisbane, Australia, Apr. 2015.        Google Scholar

12. Nannuru, S., S. Blouin, M. Coates, and M. Rabbat, "Multisensor CPHD filter," IEEE Trans. Aerosp. Electron. Syst., Vol. 52, No. 4, 1834-1854, 2016.
doi:10.1109/TAES.2016.150265        Google Scholar

13. Vivone, G., P. Braca, K. Granstrom, and P. Willett, "Multistatic Bayesian extended target tracking," IEEE Trans. Aerosp. Electron. Syst., Vol. 52, No. 6, 2626-2643, 2016.
doi:10.1109/TAES.2016.150724        Google Scholar

14. Barbary, M. and P. Zong, "An accurate 3-D netted radar model for stealth target detection based on Legendre orthogonal polynomials and TDOA technique," International Journal of Modeling and Optimization, Vol. 5, No. 1, 22-31, Feb. 2015.
doi:10.7763/IJMO.2015.V5.430        Google Scholar

15. Schmidt, R. O., "Multiple emitter location and signal parameter estimation," IEEE Transitions on Antennas and Propagation, Vol. 34, No. 3, 276-280, Mar. 1986.
doi:10.1109/TAP.1986.1143830        Google Scholar

16. Zhang, Y. and B. P. Ng, "MUSIC-like DOA estimation without estimating the number of sources," IEEE Transactions on Signal Processing, Vol. 58, No. 3, 1668-1676, 2010.
doi:10.1109/TSP.2009.2037074        Google Scholar

17. Qian, C., L. Huang, W. Zeng, and H. So, "Direction-of-arrival estimation for coherent signals without knowledge of source number," IEEE Sensors Journal, Vol. 14, No. 9, 3267-3273, 2014.
doi:10.1109/JSEN.2014.2327633        Google Scholar

18. Li, W., Z.Wang, G.Wei, L. Ma, J. Hu, and D. Ding, "A survey on multisensor fusion and consensus filtering for sensor networks," Discrete Dynamics in Nature and Society, Vol. 2015, 1-12, 2015.        Google Scholar

19. Harrington, R., Time-harmonic Electromagnetic Fields, IEEE Press, New York, 2001.
doi:10.1109/9780470546710

20. Ufimtsev, P., Method of Edge Waves in the Physical Theory of Diffraction, NTIS, Springfield, Va., 1980.

21. Kouyoumjian, R. and P. Pathak, "A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface," Proceedings of the IEEE, Vol. 62, No. 11, 1448-1461, 1974.
doi:10.1109/PROC.1974.9651        Google Scholar

22. Yu, D. and M. Zhang, "Comparison of various full-wave methods in calculating the RCS of inlet," 2008 International Conference on Microwave and Millimeter Wave Technology, 1018-1021, Nanjing, 2008.        Google Scholar

23. Gibson, W. C., The Method of Moments in Electromagnetics, CRC Press, 2014.
doi:10.1201/b17119

24. Skolnik, M., Radar Handbook, McGraw-Hill, New York, 2009.

25. Vo, B. and W. Ma, "The Gaussian mixture probability hypothesis density filter," IEEE Transactions on Signal Processing, Vol. 54, No. 11, 4091-4104, 2006.
doi:10.1109/TSP.2006.881190        Google Scholar

26. Huang, Z., S. Sun, and J. Wu, "A new data association algorithm using probability hypothesis density filter," Journal of Electronics (China), Vol. 27, No. 2, 218-223, 2010.
doi:10.1007/s11767-010-0304-0        Google Scholar

27. Mahler, R., B. Vo, and B. Vo, "CPHD filtering with unknown clutter rate and detection profile," IEEE Transactions on Signal Processing, Vol. 59, No. 8, 3497-3513, 2011.
doi:10.1109/TSP.2011.2128316        Google Scholar

28. Saucan, A.-A., M. Coates, and M. Rabbat, "A multi-sensor multi-Bernoulli filter," IEEE Transactions on Signal Processing, Vol. 65, No. 20, 5495-5509, 2017.
doi:10.1109/TSP.2017.2723348        Google Scholar

29. Vo, B., B. Vo, R. Hoseinnezhad, and R. Mahler, "Robust multi-bernoulli filtering," IEEE Journal of Selected Topics in Signal Processing, Vol. 7, No. 3, 399-409, 2013.
doi:10.1109/JSTSP.2013.2252325        Google Scholar

30. CST Microwave Studio, Computer Simulation Technology AG [Online], , available: http://www.cstamerica.com.        Google Scholar

31. Schuhmacher, D., B.-T. Vo, and B.-N. Vo, "A consistent metric for performance evaluation of multi-object filters," IEEE Transactions on Signal Processing, Vol. 56, No. 8, 3447-3457, Aug. 2008.
doi:10.1109/TSP.2008.920469        Google Scholar