1. Lee, G., B. H. Waters, Y. G. Shin, J. R. Smith, and W. S. Park, "A reconfigurable resonant coil for range adaptation wireless power transfer," IEEE Trans. Microw. Theory Tech., Vol. 64, No. 2, 624-632, 2016.
doi:10.1109/TMTT.2015.2512578 Google Scholar
2. Liu, X. C. and G. F. Wang, "A novel wireless power transfer system with double intermediate resonant coils," IEEE Trans. Ind. Electron., Vol. 63, No. 4, 2174-2180, 2016. Google Scholar
3. Sample, A., D. Meyer, and J. Smith, "Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer," IEEE Trans. Ind. Electron., Vol. 58, No. 2, 544-554, 2011.
doi:10.1109/TIE.2010.2046002 Google Scholar
4. Fu, M., T. Zhang, C. Ma, and X. Zhu, "Efficiency and optimal loads analysis for multiple-receiver wireless power transfer systems," IEEE Trans. Microw. Theory Techn., Vol. 63, No. 3, 801-812, 2015.
doi:10.1109/TMTT.2015.2398422 Google Scholar
5. Na, K., H. Jang, H. Ma, and F. Bien, "Tracking optimal efficiency of magnetic resonance wireless power transfer system for biomedical capsule endoscopy," IEEE Trans. Microw. Theory Tech., Vol. 63, No. 1, 295-304, 2015.
doi:10.1109/TMTT.2014.2365475 Google Scholar
6. Mi, C. C., G. Buja, Y. C. Su, and C. T. Rim, "Modern advances in wireless power transfer systems for roadway powered electric vehicles," IEEE Trans. Ind. Electron., Vol. 63, No. 10, 6533-6545, 2016.
doi:10.1109/TIE.2016.2574993 Google Scholar
7. Talla, V. and J. Smith, "An experimental technique for design of practical wireless power transfer systems," IEEE Int. Circuits Syst. Symp., 2041-2044, 2014. Google Scholar
8. Johari, R., J. V. Krogmeier, and D. J. Love, "Analysis and practical considerations in implementing multiple transmitters for wireless power transfer via coupled magnetic resonance," IEEE Trans. Ind. Electron., Vol. 64, No. 4, 1774-1783, 2014.
doi:10.1109/TIE.2013.2263780 Google Scholar
9. Wang, J., S. L. Ho, W. Fu, C. T. Kit, and M. Sun, "Finite-element analysis and corresponding experiments of resonant energy transfer for wireless transmission devices," IEEE Trans. Magnetics, Vol. 47, No. 5, 1074-1077, 2011.
doi:10.1109/TMAG.2010.2078492 Google Scholar
10. Lyu, Y. L., F. Y. Meng, G. H. Yang, B. J. Che, Q. Wu, L. Sun, D. Erni, and J. L.-W. Lee, "A method of using nonidentical resonant coils for frequency splitting elimination in wireless power transfer," IEEE Trans. Power Electron., Vol. 30, No. 11, 6097-6107, 2015.
doi:10.1109/TPEL.2014.2387835 Google Scholar
11. Zhang, Y. M. and Z. M. Zhao, "Frequency splitting analysis of two-coil resonant wireless power transfer," IEEE Ant. Wireless Propag. Lett., Vol. 13, No. 4, 400-402, 2014.
doi:10.1109/LAWP.2014.2307924 Google Scholar
12. Zhang, Y. M., Z. M. Zhao, and K. Chen, "Frequency splitting analysis of four-coil resonant wireless power transfer," IEEE Trans. Ind. Appl., Vol. 50, No. 4, 2436-2445, 2014.
doi:10.1109/TIA.2013.2295007 Google Scholar
13. Lan, J., H. Tang, and G. Xin, "Frequency splitting analysis of wireless power transfer system based on T-type transformer model," Electron. Electrical Eng., Vol. 19, No. 10, 109-113, 2013. Google Scholar
14. Sample, A. P., D. A. Meyer, and J. R. Smith, "Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer," IEEE Trans. Ind. Electron., Vol. 58, No. 2, 544-554, 2011.
doi:10.1109/TIE.2010.2046002 Google Scholar
15. Kim, Kim, D. H. Kim, and Y. J. Park, "Analysis of capacitive impedance matching networks for simultaneous wireless power transfer to multiple devices," IEEE Trans. Ind. Electron., Vol. 62, No. 5, 2807-2813, 2015.
doi:10.1109/TIE.2014.2365751 Google Scholar
16. Fu, M., H. Yin, X. Zhu, and C. Ma, "Analysis and tracking of optimal load in wireless power transfer systems," IEEE Trans. Power Electron., Vol. 30, No. 7, 3952-3963, 2015.
doi:10.1109/TPEL.2014.2347071 Google Scholar
17. Vasilev, I., J. Lindstrand, V. Plicanic, and H. Sjoland, "Experimental investigation of adaptive impedance matching for a MIMO terminal with CMOS-SOI tuners," IEEE Trans. Micro. Theory Tech., Vol. 64, No. 5, 1622-1622, 2016.
doi:10.1109/TMTT.2016.2546244 Google Scholar
18. Koh, K. E., T. C. Beh, T. Imura, and Y. Hori, "Impedance matching and power division using impedance inverter for wireless power transfer via magnetic resonant coupling," IEEE Trans. Ind. App., Vol. 50, No. 3, 2061-2070, 2014.
doi:10.1109/TIA.2013.2287310 Google Scholar
19. Heebl, J. D., E. M. Thomas, and R. P. Pennoand A. Grbic, "Comprehensive analysis and measurement of frequency-tuned and impedance-tuned wireless non-radiative power-transfer systems," IEEE Antennas Propag. Mag., Vol. 56, No. 4, 44-60, 2014.
doi:10.1109/MAP.2014.6931657 Google Scholar
20. Lee, W. S., W. I. Son, K. S. Oh, and J. W. Yu, "Contactless energy transfer systems using antiparallel resonant loops," IEEE Trans. Ind. Electron., Vol. 61, No. 1, 350-359, 2013.
doi:10.1109/TIE.2011.2177611 Google Scholar
21. Li, H., H. Zhang, C. Zhang, P. Li, and R. Cropp, "A novel unsupervised levy flight particle swarm optimization (ULPSO) method for multispectral remote-sensing image classification," International Journal of Remote Sensing, Vol. 38, No. 23, 6970-6992, 2017.
doi:10.1080/01431161.2017.1368102 Google Scholar
22. Jabri, I., A. Bouallegue, and F. Ghodbane, "Misalignment controller in wireless battery charger for electric vehicle based on MPPT method and metaheuristic algorithm," Wireless Netw., Vol. 10, 1-22, 2017. Google Scholar
23. Schuetz, M., A. Georgiadis, A. Collado, and G Fischer, "A particle swarm optimizer for tuning a software-defined, highly configurable wireless power transfer platform," Wireless Power Transfer Conference, 1-24, 2015. Google Scholar
24. Hu, H. and S. V. Georgakopoulos, "Multiband and broadband wireless power transfer systems using the conformal strongly coupled magnetic resonance method," IEEE Trans. Ind. Electron., Vol. 64, No. 5, 3595-3607, 2017.
doi:10.1109/TIE.2016.2569459 Google Scholar
25. Wang, M., J. Feng, Y. Fan, M. Shen, J. Liang, and Y. Shi, "A novel planar wireless power transfer system with distance-insensitive characteristics," Progress In Electromagnetics Research Lett., Vol. 75, 13-19, 2018. Google Scholar