Vol. 74
Latest Volume
All Volumes
PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-10-11
Research on Torque Ripple Optimization of Switched Reluctance Motor Based on Finite Element Method
By
Progress In Electromagnetics Research M, Vol. 74, 115-123, 2018
Abstract
Torque ripple is the main cause of motor vibration and noise. In order to reduce the torque ripple of the switched reluctance motor(SRM), a new type of rotor tooth profile is studied, namely adding a semi-oval auxiliary core on both sides of the conventional parallel rotor tooth profile. Using a finite element method, a 12/8-pole SRM was modeled, and an optimal modified model was obtained through parameterized simulation. At the same time, in order to further reduce the torque ripple, the turn-on and turn-off angles of the power converter are optimized, and the torque jump caused by the commutation phase is alleviated. The combination of turn-on and turn-off angles is obtained through simulation calculation, and it can not only significantly reduce the torque ripple of the SRM, but also alleviate the local saturation caused by the double salient pole. This method can reduce the local saturation caused by the double salient structure and the large torque jump caused by the commutation phase. This method is of reference for other double salient motors. This method has implications for other double salient pole motors.
Citation
Libing Jing, and Jia Cheng, "Research on Torque Ripple Optimization of Switched Reluctance Motor Based on Finite Element Method," Progress In Electromagnetics Research M, Vol. 74, 115-123, 2018.
doi:10.2528/PIERM18071104
References

1. Zhu, J., K. W. E. Cheng, and X. Xue, "Design of a new enhanced torque in-wheel switched reluctance motor with divided teeth for electric vehicles," IEEE Trans. Magn., Vol. 53, No. 11, ID:2501504, Nov. 2017.

2. Cao, X., J. Zhou, and C. Liu, "Advanced control method for single-winding bearingless switched reluctance motor to reduce torque ripple and radial displacement," IEEE Trans. Energy Convers., Vol. 32, No. 4, 1533-1543, Jun. 2017.
doi:10.1109/TEC.2017.2719160

3. Lawrenson, P. J., J. M. Stephenson, and P. T. Blenkinsop, "Variable-speed switched reluctance motors," Electric Power Applications IEE Proceedings B, Vol. 127, No. 4, 253-265, Jul. 1980.
doi:10.1049/ip-b.1980.0034

4. Li, Z., L. Zheng, and W. Yang, "Research on torque ripple and structure optimization of switched reluctance motor," Electric Machines and Control., Vol. 22, No. 6, 11-21, Jul. 2018.

5. Yao, S. and W. Zhang, "A simple strategy for parameters identification of SRM direct instantaneous torque control," IEEE Trans. on Power Electro., Vol. 33, No. 4, 3622-3630, Apr. 2018.
doi:10.1109/TPEL.2017.2710137

6. Rafiq, M., S. U. Rehman, and F. U. Rehman, "A second order sliding mode control design of a switched reluctance motor using super twisting algorithm," Simulation Modelling Practice & Theory, Vol. 25, No. 6, 106-117, Jun. 2012.
doi:10.1016/j.simpat.2012.03.001

7. Ye, W., Q. Ma, and P. Zhang, "Torque ripple reduction in switched reluctance motor using a novel torque sharing function," 2016 IEEE International Conference on Aircraft Utility Systems, 177-182, 2016.

8. Cai, Y., S. Sun, and C. Wang, "The research on flux linkage characteristic based on BP and RBF neural network for switched reluctance motor," Progress In Electromagnetics Research M, Vol. 35, 151-161, 2014.
doi:10.2528/PIERM14011604

9. Samani, O. N. and B. Ganji, "Noise reduction of switched reluctance motors," 2017 8th Power Electronics, Drive Systems & Technologies Conference, 300-304, 2017.
doi:10.1109/PEDSTC.2017.7910341

10. Sahin, C., A. E. Amac, and M. Karacor, "Reducing torque ripple of switched reluctance machines by relocation of rotor moulding clinches," IET Electric Power Applications, Vol. 6, No. 9, 753-760, Nov. 2012.
doi:10.1049/iet-epa.2011.0397

11. Faiz, J., F. Tahvilipour, and G. Shahgholian, "Performance improvement of a switched reluctance motor," PIERS Proceedings, Vol. 49, No. 1, 728-732, Kuala Lumpur, Malaysia, Mar. 27–30, 2012.

12. Jin, W. L., S. K. Hong, and B. I. Kwon, "New rotor shape design for minimum torque ripple of SRM using FEM," IEEE Trans. Magn., Vol. 40, No. 2, 754-757, Mar. 2004.
doi:10.1109/TMAG.2004.824803

13. Li, G., J. Ojeda, and S. Hlioui, "Modification in rotor pole geometry of mutually coupled switched reluctance machine for torque ripple mitigating," IEEE Trans. Magn., Vol. 48, No. 6, 2025-2034, Jun. 2012.
doi:10.1109/TMAG.2011.2179307

14. Ozoglu, Y., M. Garip, and E. Mese, "New pole tip shapes mitigating torque ripple in short pitched and fully pitched switched reluctance motors," Electric Power Systems Research, Vol. 74, No. 1, 95-103, Dec. 2005.
doi:10.1016/j.epsr.2004.09.008

15. Sundaram, M., P. Navaneethan, and M. Vasanthakumar, "Magnetic analysis and comparison of switched reluctance motors with different stator pole shapes using a 3D finite element method," 2009 International Conference on Control, Automation, Communication and Energy Conservation, 1-4, 2009.

16. Cai, Y. and D. X. Zhang, "Simulation study on torque ripple reduction of a switched reluctance motor using new rotor tooth," Transactions of China Electrotechnical Society, Vol. 30, No. 2, 64-70, Dec. 2015.

17. Yong, K. C., H. S. Yoon, and S. K. Chang, "Pole-shape optimization of a switched-reluctance motor for torque ripple reduction," IEEE Trans. Magn., Vol. 43, No. 4, 1797-1800, Apr. 2007.
doi:10.1109/TMAG.2006.892292

18. Sheth, N. K. and K. R. Rajagopal, "Torque profiles of a switched reluctance motor having special pole face shapes and asymmetric stator poles," IEEE Trans. Magn., Vol. 40, No. 4, 2035-2037, Aug. 2004.
doi:10.1109/TMAG.2004.829841

19. Lee, J. H., E. W. Lee, and Y. C. Cho, "Characteristic analysis of single phase SRM with stepped rotor pole face by FEM," 2006 12th Biennial IEEE Conference on Electromagnetic Field Computation, 153-153, 2006.

20. Torkaman, H. and S. E. Afjei, "Comparison of three novel types of two-phase switched reluctance motors using finite element method," Progress In Electromagnetics Research, Vol. 125, 151-164, 2012.
doi:10.2528/PIER12010407