Vol. 76
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-12-06
A Technique to Retrieve High-Frequency Permeability of Metals from Constitutive Parameters of Composites with Metal Inclusions of Arbitrary Shape, Estimate of the Microwave Permeability of Nickel
By
Progress In Electromagnetics Research M, Vol. 76, 143-155, 2018
Abstract
The technique to retrieve the microwave permeability of metals from the measured constitutive parameters of composites with fine powder of these metals is developed. The technique is based on the modified Sihvola mixing rule and describes a wide range of contrasts in the component susceptibility, accounts for both the inclusion shape and the percolation threshold. These parameters are related to the Bergman-Milton shape-distribution width and to composite structure. The technique is applied to retrieve the microwave permeability of nickel. The metal permeability is calculated from the measured permittivity and permeability of paraffin-bound composites filled with nickel flakes or spheres with account for skinning in conducting inclusions. The measurements are performed using the transmission coaxial-cell in the frequency range up to 15 GHz. The effects of filling factor, inclusion shape and size on the retrieved permeability spectra are analyzed. The permeability retrieval procedure is based on parameter fitting of the selected mixing model for the measured permittivity and permeability data. The retrieved permeability is close to the data available from archived literature sources that are obtained with thick nickel wires and foils.
Citation
Sergey Nickolaevich Starostenko Konstantin Rozanov Artem Olegovich Shiryaev Andrey Lagarkov , "A Technique to Retrieve High-Frequency Permeability of Metals from Constitutive Parameters of Composites with Metal Inclusions of Arbitrary Shape, Estimate of the Microwave Permeability of Nickel," Progress In Electromagnetics Research M, Vol. 76, 143-155, 2018.
doi:10.2528/PIERM18071707
http://www.jpier.org/PIERM/pier.php?paper=18071707
References

1. Olmedo, L., G. Chateau, C. Deleuze, and J. L. Forveille, "Microwave characterization and modelization of magnetic granular materials," J. Appl. Phys., Vol. 73, 6992, 1993.
doi:10.1063/1.352408

2. Lederer, P. and C. Brewitt-Taylor, "Measurement of microwave properties of magnetic particulate composites," IEEE Proc. SCI. Meas. Techn., Vol. 147, No. 4, 209, 2000.
doi:10.1049/ip-smt:20000528

3. Odelevskiy, V. I., "Generalized conductivity of heterogeneous systems,", Ph.D. Thesis, Leningrad, 1947 (in Russian).

4. Pal, R., Electromagnetic, Mechanical and Transport Properties of Composite Materials, CRC Press, Taylor & Frances, London, New-York, 2015.

5. Starostenko, S. N., K. N. Rozanov, A. O. Shiryaev, A. N. Shalygin, and A. N. Lagarkov, "Determination of sendust intrinsic permeability from microwave constitutive parameters of composites with sendust spheres and flakes," J. Appl. Phys., Vol. 121, 245107-245123, 2017.
doi:10.1063/1.4989848

6. Starostenko, S. N., K. N. Rozanov, A. O. Shiryaev, A. N. Lagarkov, and A. N. Shalygin, "Selection of a mixing model and determination of inclusion microwave permeability for a composite filled with metal powder," J. Magn. Magn, Mater., Vol. 459, 305-310, 2018.
doi:10.1016/j.jmmm.2017.10.021

7. Starostenko, S. N., et al., "Estimation of the superhigh-frequency magnetic permeability of alsifer from the measured permeability of composites," Physics of the Solid State, Vol. 59, No. 11, 2203-2210, 2017.
doi:10.1134/S1063783417110282

8. Landau, L. D., L. P. Pitaevskii, and E. M. Lifshitz, Electrodynamics of Continuous Media, Butterworth-Heinemann, Oct. 1984.

9. Tuncer, E., "The Landau-Lifshitz/Looyenga dielectric mixture expression and its self-similar fractal nature,", arXiv:cond-mat/0503750, 2005.

10. Wiener, O., , Der Abhandlungen derMathematisch-Physischen Klasse der Königl. Sachsischen Gesellschaft der Wissenschaften, 32, 509, 1912.

11. Lagarkov, A. N., V. N. Semenenko, V. A. Chistyaev, and I. T. Iakubov, "High-frequency modes in magnetic spectra of carbonyl iron," J. Magn. Magn. Mater., Vol. 324, 3402-3405, 2012.
doi:10.1016/j.jmmm.2012.02.052

12. Shlepnev, Yu. and S. McMorrow, "Nickel characterization for interconnect analysis," IEEE International Symposium on Electromagnetic Compatibility, 524-529, Aug. 2011.

13. Zivkovic, I. and A. Murk, "Characterization of magnetically loaded microwave absorbers," Progress In Electromagnetics Research B, Vol. 33, 277-289, 2011.
doi:10.2528/PIERB11071108

14. Starostenko, S. N., K. N. Rozanov, A. O. Shiryaev, V. A. Garanov, and A. N. Lagarkov, "Permeability of nickel determined from microwave constitutive parameters of composites filled with nickel powders,", submitted to IEEE Trans. Magn., doi 10.1109/TMAG.2018.2852366.

15. Bozorth, R. M. and N. Y. Ferromagnetism, , D. Van Nostrand Co. Inc., 1951.

16. Galek, T., K. Porath, E. Burkel, and U. van Rienen, "Extraction of effective permittivity and permeability of metallic powders in the microwave range," Model. Simul. Mater. Sci. Eng., Vol. 18, 025015-025028, 2010.
doi:10.1088/0965-0393/18/2/025015

17. Lomayeva, S. F., A. V. Syugaev, A. N. Maratkanova, and A. A. Shakov, "Structure and microwave properties of Fe powders prepared by surfactant-assisted ball milling in organic media," J. Alloys Compd., Vol. 721, 18-27, 2017.
doi:10.1016/j.jallcom.2017.05.311

18. Ignatenko, M., M. Tanaka, and M. Sato, "Absorption of microwave energy by a spherical nonmagnetic metal particle," Jap. J. Appl. Phys., Vol. 48, No. 6R, 67001-67006, 2009.
doi:10.1143/JJAP.48.067001

19. Sihvola, A. H., "Mixing rules," Artificial Materials Handbook, Vol. I: ed. F. Capolino, 9.1–9.12, CRC press, Taylor & Francis, 2009.

20. Sihvola, A. H. and J. Au. Kong, "Effective permittivity of dielectric mixtures," IEEE Trans. on Geoscience and Remote Sensing, Vol. 26, No. 4, Jul. 1988.

21. Bergman, D. J., "Bounds for the complex dielectric constant of a two component material," Phys. Rev. B, Vol. 23, 3058-65, 1981.
doi:10.1103/PhysRevB.23.3058

22. Zhang, D. and E. Cherkaev, "Reconstruction of spectral function from effective permittivity of a composite material using rational function approximations," Journal of Computational Physics, Vol. 228, 5390-5409, 2009.
doi:10.1016/j.jcp.2009.04.014

23. Ghosh, K. and R. Fuchs, "Spectral theory for two-component porous media," Phys Rev. B, Vol. 38, No. 8, 5222-5236, 1988.
doi:10.1103/PhysRevB.38.5222

24. Rozanov, K. N., M. Y. Koledintseva, and J. Drewniak, "A mixing rule for predicting frequency dependence of material parameters in magnetic composites," J. Magn. Magn. Mater., Vol. 324, 1063-1066, 2012.
doi:10.1016/j.jmmm.2011.10.028

25. Osipov, A. V., K. N. Rozanov, N. A. Simonov, and S. N. Starostenko, "Reconstruction of intrinsic parameters of a composite from the measured frequency dependence of permeability," J. Phys. Condens. Matter., Vol. 14, 9507-9523, 2002.
doi:10.1088/0953-8984/14/41/308

26. Rozanov, K. N., A. V. Osipov, D. A. Petrov, S. N. Starostenko, and E. P. Yelsukov, "The effect of shape distribution of inclusions on the frequency dependence of permeability in composites," J. Magn. Magn. Mater., Vol. 321, 738-741, 2009.
doi:10.1016/j.jmmm.2008.11.039

27. Petrov, D. A., K. N. Rozanov, and M. Y. Koledintaeva, "Influence of higher-order modes in coaxial waveguide on measurements of material parameters," IEEE Trans. EMC, Vol. 3, 66-70, 2018.

28. Arkadiev, W., "Absorption of electromagnetic waves in two parallel wires," Ann. Physik, Vol. 58, No. 4, 105-138, 1919.
doi:10.1002/andp.19193630202

29. Simon, I., "Magnetic permeability of nickel in the region of centimeter waves," Nature, No. 3996, 735, 1946.
doi:10.1038/157735a0