Vol. 74
Latest Volume
All Volumes
PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-10-03
Nonlinear Single Negative Metamaterials Based on Varactor Diodes
By
Progress In Electromagnetics Research M, Vol. 74, 25-32, 2018
Abstract
In this paper, the nonlinear single negative metamaterials (NLSNM) based on the microstrip loaded with varactor diodes are investigated. It is found that the NLSNM, including nonlinear epsilon-negative metamaterial (NLENM) and nonlinear mu-negative metamaterial (NLMNM) can be realized by loading varactor diodes and chip inductors onto the microstrip, and their transmission gaps can be controlled conveniently by the signal power. In addition, the nonlinear property of the heterostructure constructed of NLMNM and epsilon-negative metamaterial (ENM) is also studied, and the results show that the transmission property, especially the transmittance of the tunneling peak of the NLMNM-ENM heterostructure can also be regulated by the signal power. The NLSNM may have important potential applications in the microwave switch controlled by the signal power.
Citation
Tuanhui Feng, Hongpei Han, and Limin Wang, "Nonlinear Single Negative Metamaterials Based on Varactor Diodes," Progress In Electromagnetics Research M, Vol. 74, 25-32, 2018.
doi:10.2528/PIERM18071801
References

1. Alu, A. and N. Engheta, "Pairing an epsilon-negative slab with a mu-negative slab: Resonance, tunneling and transparency," IEEE Trans. Antennas Propagat., Vol. 51, 2558-2571, 2003.
doi:10.1109/TAP.2003.817553

2. Fujishige, T., C. Caloz, and T. Itoh, "Experimental demonstration of transparency in the ENG- MNG pair in a CRLH transmission-line implementation," Microw. Opt. Tech. Lett., Vol. 46, 476-481, 2005.
doi:10.1002/mop.21022

3. Feng, T. H., Y. H. Li, J. Y. Guo, L. He, H. Q. Li, Y. W. Zhang, Y. L. Shi, and H. Chen, "Highly localized mode in a structure made of epsilon-negative and mu-negative metamaterial," J. Appl. Phys., Vol. 104, 013107, 2008.
doi:10.1063/1.2949264

4. Feng, T. H., Y. H. Li, H. T. Jiang, Y. Sun, L. He, H. Q. Li, Y. W. Zhang, Y. L. Shi, and H. Chen, "Electromagnetic tunneling in a sandwich structure containing single negative media," Phys. Rev. E, Vol. 79, 026601, 2009.
doi:10.1103/PhysRevE.79.026601

5. Guo, Z. W., H. T. Jiang, Y. Long, K. Yu, J. Ren, C. H. Xue, and H. Chen, "Photonic spin Hall effect in waveguides composed of two types of single-negative metamaterials," Scienti c Reports, Vol. 7, 7724, 2017.
doi:10.1038/s41598-017-07711-w

6. Qiu, Y., L. Peng, X. Jiang, Z. Sun, and S. Tang, "Ultra-small single-negative metamaterial insulator for mutual coupling reduction of high-pro le monopole antenna array," Progress In Electromagnetics Research C, Vol. 72, 197-205, 2017.
doi:10.2528/PIERC16100803

7. Chen, Y. H., "Defect modes merging in one-dimensional photonic crystals with multiple single- negative material defects," Appl. Phys. Lett., Vol. 92, 011925, 2008.
doi:10.1063/1.2832661

8. Feng, T. H., F. Yang, Y. H. Li, Y. Sun, H. Lu, H. T. Jiang, Y. W. Zhang, and H. Chen, "Light tunneling effect tuned by a meta-interface with electromagnetically-induced-transparency- like properties," Appl. Phys. Lett., Vol. 102, 251908, 2013.
doi:10.1063/1.4810020

9. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett., Vol. 76, 4773-4776, 1996.
doi:10.1103/PhysRevLett.76.4773

10. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 11, 2075-2084, 1999.
doi:10.1109/22.798002

11. Martin, F., J. Bonache, F. Falcone, M. Sorolla, and R. Marques, "Split ring resonator-based left- handed coplanar waveguide," Appl. Phys. Lett., Vol. 83, 4652-4654, 2003.
doi:10.1063/1.1631392

12. Falcone, F., T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marques, F. Martin, and M. Sorolla, "Babinet principle applied to the design of metasurfaces and metamaterials," Phys. Rev. Lett., Vol. 93, 197401, 2004.
doi:10.1103/PhysRevLett.93.197401

13. Xu, H. X., G. M. Wang, M. Q. Qi, and H. Y. Zeng, "Ultra-small single-negative electric metamaterials for electromagnetic coupling reduction of microstrip antenna array," Opt. Express, Vol. 20, No. 20, 21968-21976, 2012.
doi:10.1364/OE.20.021968

14. Zeng, R., Y. P. Yang, and S. Y. Zhu, "Casimir force between anisotropic single-negative metamaterials," Phys. Rev. A, Vol. 87, 063823, 2013.
doi:10.1103/PhysRevA.87.063823

15. Valagiannopoulos, C. A., N. L. Tsitsas, and A. Lakhtakia, "Giant enhancement of the controllable in-plane anisotropy of biased isotropic noncentrosymmetric materials with epsilon-negative multilayers," J. Appl. Phys., Vol. 121, 063102, 2017.
doi:10.1063/1.4975482

16. Fu, X. L., G. C.Wu, W. X. Bai, G. M.Wang, and J. G. Liang, "Electromagnetic coupling reduction in dual-band microstrip antenna array using ultra-compact single-negative electric metamaterials for MIMO application," Chin. Phys. B, Vol. 26, No. 2, 024101, 2017.
doi:10.1088/1674-1056/26/2/024101

17. Shadrivov, I. V., A. B. Kozyrev, D. W. van der Weide, and Y. S. Kivshar, "Nonlinear magnetic metamaterials," Opt. Express, Vol. 16, No. 25, 20266-20271, 2008.
doi:10.1364/OE.16.020266

18. Powell, D. A., I. V. Shadrivov, and Y. S. Kivshar, "Nonlinear electric metamaterials," Appl. Phys. Lett., Vol. 95, 084102, 2009.
doi:10.1063/1.3212726

19. Wang, Z. Y., Y. Luo, L. Peng, J. T. Huangfu, T. Jiang, D. X. Wang, H. S. Chen, and L. X. Ran, "Second-harmonic generation and spectrum modulation by an active nonlinear metamaterial," Appl. Phys. Lett., Vol. 94, 134102, 2009.
doi:10.1063/1.3111437

20. Wang, Z. Y., Y. Luo, T. Jiang, Z. Wang, J. T. Huangfu, and L. X. Ran, "Harmonic image reconstruction assisted by a nonlinear metmaterial surface," Phys. Rev. Lett., Vol. 106, 047402, 2011.
doi:10.1103/PhysRevLett.106.047402

21. Wall, W. S., S. M. Rudolph, S. K. Hong, and K. L. Morgan, "Broadband switching nonlinear metamaterial," IEEE Antennas Wireless Propag. Lett., Vol. 10, 427-430, 2014.
doi:10.1109/LAWP.2014.2308989

22. Barbuto, M., F. Bilotti, and A. Toscano, "Power-selectivity horn ltenna loaded with a nonlinear SRR," 9th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics-Metamaterials, 22-24, Oxford, 2015.

23. Monti, A., M. Barbuto, A. Toscano, and F. Bilotti, "Nonlinear mantle cloaking devices for power- dependent antenna arrays," IEEE Antennas Wireless Propag. Lett., Vol. 16, 1727-1730, 2017.
doi:10.1109/LAWP.2017.2670025

24. Fernandes, D. E. and M. G. Silveirinha, "Bistability in mushroom-type metamaterials," J. Appl. Phys., Vol. 122, 014303, 2017.
doi:10.1063/1.4989816

25. Hooper, D. C., A. G. Mark, C. Kuppe, J. T. Collins, P. Fischer, and V. K. Valev, "Strong rotational anisotropies affect nonlinear chiral metamaterials," Adv. Mater., Vol. 29, 1605110, 2017.
doi:10.1002/adma.201605110

26. Lv, W., F. Z. Xie, Y. J. Huang, J. Li, X. C. Fang, A. Rashid, W. R. Zhu, I. D. Rukhlenko, and G. J. Wen, "Nonlinear coupling states study of electromagnetic force actuated plasmonic nonlinear metamaterials," Opt. Express, Vol. 26, No. 3, 3211-3220, 2018.
doi:10.1364/OE.26.003211

27. Garbic, A. and G. V. Eleftheriades, "Experimental veri cation of backward-wave radiation from a negative refractive index metamaterial," J. Appl. Phys., Vol. 92, 5930-5935, 2002.
doi:10.1063/1.1513194