1. Jiang, X. L., "Analysis of the situation of power development and reform in China (2018)," China Electrical Equipment Industry, No. 5, 15-29, 2018. Google Scholar
2. Yuan, J. H., Q. Lei, and M. P. Xiong, "The prospective of coal power in China: Will it reach a plateau in the coming decade?," Energy Policy, Vol. 98, 495-504, 2016.
doi:10.1016/j.enpol.2016.09.025 Google Scholar
3. Gao, H., J. C. Liu, and J. Y. Liu, "Analysis and research of transmission corridor planning under the global energy network," Sichuan Electric Power Technology, Vol. 40, No. 3, 15-20, 2017. Google Scholar
4. Wang, M. X., X. S. Han, and H. B. Sun, "Analysis of enhancing power grid's capacity to absorb intermittent power generation based on electric heating coordination theory," Sichuan Electric Power Technology, Vol. 33, No. 9, 7-12, 2013. Google Scholar
5. Zhan, J., C. Y. Chung, and E. Demeter, "Time series modeling for dynamic thermal rating of overhead lines," IEEE Transactions on Power Systems, Vol. 32, No. 3, 2172-2182, 2017.
doi:10.1109/TPWRS.2016.2596285 Google Scholar
6. Ying, Z. F., Y. S. Chen, and K. Feng, "New DTR estimation method without measured solar and wind data," Journal of Electrical Engineering and Technology, Vol. 12, No. 2, 576-585, 2017.
doi:10.5370/JEET.2017.12.2.576 Google Scholar
7. Ringelband, T., P. Schafer, and A. Moser, "Probabilistic ampacity forecasting for overhead lines using weather forecast ensembles," Electrical Engineering, Vol. 95, No. 2, 99-107, 2013.
doi:10.1007/s00202-012-0244-8 Google Scholar
8. Babs, A., "Weather-based and conductor state measurement methods applied for dynamic line rating forecasting," Proceedings of the International Conference on Advanced Power System Automation and Protection, 2011. Google Scholar
9. Zhou, H. S., Z. Chen, and J. Zhang, "Application of meteorological numerical forecast technology for improving transmission line capability," Power System Technology, Vol. 40, No. 7, 2175-2180, 2016. Google Scholar
10. Troccoli, A., L. Dubus, and S. E. Haupt, Weather Matters for Energy, Springer, New York, 2014.
doi:10.1007/978-1-4614-9221-4
11. Michiorri, A., H. M. Nguyen, and S. Alessandrini, "Forecasting for dynamic line rating," Renewable and Sustainable Energy Reviews, Vol. 52, 1713-1730, 2015.
doi:10.1016/j.rser.2015.07.134 Google Scholar
12. Banakar, H., N. Alguacil, and F. D. Galiana, "Electrothermal coordination Part I: Theory and implementation schemes," IEEE Transactions on Power Systems, Vol. 20, No. 2, 798-805, 2005.
doi:10.1109/TPWRS.2005.846196 Google Scholar
13. Alguacil, N., M. H. Banakar, and F. D. Galiana, "Electrothermal coordination Part II: Case studies," IEEE Transactions on Power Systems, Vol. 20, No. 4, 1738-1745, 2005.
doi:10.1109/TPWRS.2005.857836 Google Scholar
14. Cecchi, V., M. Knudson, and K. Miu, "System impacts of temperature-dependent transmission line models," IEEE Transactions on Power Delivery, Vol. 28, No. 4, 2300-2308, 2013.
doi:10.1109/TPWRD.2013.2276757 Google Scholar
15. Cecchi, V., A. S. Leger, and K. Miu, "Incorporating temperature variations into transmission-line models," IEEE Transactions on Power Delivery, Vol. 26, No. 4, 2189-2196, 2011.
doi:10.1109/TPWRD.2011.2159520 Google Scholar
16. Aaron, S. L. and N. Chika, "OTA-based transmission line model with variable parameters for analog power ow computation," International Journal of Circuit Theory and Applications, Vol. 38, 199-220, 2008. Google Scholar
17. Teh, J. and I. Cotton, "Critical span identication model for dynamic thermal rating system placement," IET Generation, Transmission and Distribution, Vol. 9, No. 16, 2644-2652, 2015.
doi:10.1049/iet-gtd.2015.0601 Google Scholar