Vol. 74
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-10-04
The Influence of Spatial and Temporal Distribution of Meteorology on Power System Operation
By
Progress In Electromagnetics Research M, Vol. 74, 41-50, 2018
Abstract
Due to the spatial and temporal distribution of meteorological conditions along the transmission lines, the equivalent model with lumped parameters cannot accurately represent the line model with the actual parameters. In the paper, the nonuniform parameter model based on the dynamic thermal rating (DTR) technology of transmission lines is adopted to establish the power flow analysis model based on the conductor temperature. The algorithm presented in the paper is adopted to analyze the power flow of power networks with known load and meteorological parameters. And then cases with parameters of di erent seasons and spatial distribution in practical conditions are used to verify the feasibility of the algorithm. It is shown that the power flow analysis model established in this paper can realize the accurate analysis of the thermal load capacity of the transmission line in the power grid, which has great practical significance.
Citation
Fan Song Yanling Wang Guangling Gao Xianghua Pan Mingjun Zhang Likai Liang Zhijun Yin , "The Influence of Spatial and Temporal Distribution of Meteorology on Power System Operation," Progress In Electromagnetics Research M, Vol. 74, 41-50, 2018.
doi:10.2528/PIERM18072202
http://www.jpier.org/PIERM/pier.php?paper=18072202
References

1. Jiang, X. L., "Analysis of the situation of power development and reform in China (2018)," China Electrical Equipment Industry, No. 5, 15-29, 2018.

2. Yuan, J. H., Q. Lei, and M. P. Xiong, "The prospective of coal power in China: Will it reach a plateau in the coming decade?," Energy Policy, Vol. 98, 495-504, 2016.
doi:10.1016/j.enpol.2016.09.025

3. Gao, H., J. C. Liu, and J. Y. Liu, "Analysis and research of transmission corridor planning under the global energy network," Sichuan Electric Power Technology, Vol. 40, No. 3, 15-20, 2017.

4. Wang, M. X., X. S. Han, and H. B. Sun, "Analysis of enhancing power grid's capacity to absorb intermittent power generation based on electric heating coordination theory," Sichuan Electric Power Technology, Vol. 33, No. 9, 7-12, 2013.

5. Zhan, J., C. Y. Chung, and E. Demeter, "Time series modeling for dynamic thermal rating of overhead lines," IEEE Transactions on Power Systems, Vol. 32, No. 3, 2172-2182, 2017.
doi:10.1109/TPWRS.2016.2596285

6. Ying, Z. F., Y. S. Chen, and K. Feng, "New DTR estimation method without measured solar and wind data," Journal of Electrical Engineering and Technology, Vol. 12, No. 2, 576-585, 2017.
doi:10.5370/JEET.2017.12.2.576

7. Ringelband, T., P. Schafer, and A. Moser, "Probabilistic ampacity forecasting for overhead lines using weather forecast ensembles," Electrical Engineering, Vol. 95, No. 2, 99-107, 2013.
doi:10.1007/s00202-012-0244-8

8. Babs, A., "Weather-based and conductor state measurement methods applied for dynamic line rating forecasting," Proceedings of the International Conference on Advanced Power System Automation and Protection, 2011.

9. Zhou, H. S., Z. Chen, and J. Zhang, "Application of meteorological numerical forecast technology for improving transmission line capability," Power System Technology, Vol. 40, No. 7, 2175-2180, 2016.

10. Troccoli, A., L. Dubus, and S. E. Haupt, Weather Matters for Energy, Springer, New York, 2014.
doi:10.1007/978-1-4614-9221-4

11. Michiorri, A., H. M. Nguyen, and S. Alessandrini, "Forecasting for dynamic line rating," Renewable and Sustainable Energy Reviews, Vol. 52, 1713-1730, 2015.
doi:10.1016/j.rser.2015.07.134

12. Banakar, H., N. Alguacil, and F. D. Galiana, "Electrothermal coordination Part I: Theory and implementation schemes," IEEE Transactions on Power Systems, Vol. 20, No. 2, 798-805, 2005.
doi:10.1109/TPWRS.2005.846196

13. Alguacil, N., M. H. Banakar, and F. D. Galiana, "Electrothermal coordination Part II: Case studies," IEEE Transactions on Power Systems, Vol. 20, No. 4, 1738-1745, 2005.
doi:10.1109/TPWRS.2005.857836

14. Cecchi, V., M. Knudson, and K. Miu, "System impacts of temperature-dependent transmission line models," IEEE Transactions on Power Delivery, Vol. 28, No. 4, 2300-2308, 2013.
doi:10.1109/TPWRD.2013.2276757

15. Cecchi, V., A. S. Leger, and K. Miu, "Incorporating temperature variations into transmission-line models," IEEE Transactions on Power Delivery, Vol. 26, No. 4, 2189-2196, 2011.
doi:10.1109/TPWRD.2011.2159520

16. Aaron, S. L. and N. Chika, "OTA-based transmission line model with variable parameters for analog power ow computation," International Journal of Circuit Theory and Applications, Vol. 38, 199-220, 2008.

17. Teh, J. and I. Cotton, "Critical span identi cation model for dynamic thermal rating system placement," IET Generation, Transmission and Distribution, Vol. 9, No. 16, 2644-2652, 2015.
doi:10.1049/iet-gtd.2015.0601