1. Li, S. X., Y. Y. Gao, Y.-H. Li, and S. X. Tian, "Method of measuring seed water content and its expectation," Seed, Vol. 29, No. 10, 2010. Google Scholar
2. Singh, P., M. Flury, and W. F. Schillinger, "Predicting seed-zone water content for summer fallow in the Inland Pacific Northwest," Soil & Tillage Research, Vol. 115, No. 5, 94-104, USA, 2011.
doi:10.1016/j.still.2011.07.005 Google Scholar
3. Matthews, S., E. Noli, I. Demir, M. Khajeh-Hosseini, and M. H. Wagner, "Evaluation of seed quality: From physiology to international standardization," Seed Science Research, Vol. 22, No. S1, S69-S73, 2012.
doi:10.1017/S0960258511000365 Google Scholar
4. Chinese Academy of Sciences "Chinese Flora 12,", Chinese Flora Editorial Committee, 56–528, Beijing, 2000. Google Scholar
5. Hnijenstei, R. and D. N. NYdam, "Comparison of oven moisture test at 130◦C vs 103◦C," Seed Science and Technology, Vol. 30, No. 3, 102-106, 2002. Google Scholar
6. Ling, J., Z. Teng, H. Lin, and J. Li, "Estimation and fusion method for moisture content detection based on loss on drying method," Chinese Journal of Scientific Instrument, Vol. 39, No. 2, 2018. Google Scholar
7. Chinese Academy of Sciences "Chinese Flora 24,", Chinese Flora Editorial Committee, 56–528, Beijing, 2000. Google Scholar
8. Chinese Academy of Sciences "Chinese Flora 12,", Chinese Flora Editorial Committee, 52–86, Beijing, 1988. Google Scholar
9. Fischer, W., S. Beil, and K. D. Krenn, "Karl-Fischer-Reaktion in dimethylsulfoxid," Advanced Synthesis & Catalysis, Vol. 337, No. 1, 266-268, 1995. Google Scholar
10. Du, G. P., Seeds and Seed Physiology, 110-113, Peking University Press, Beijing, 2009.
11. The International Seed Testing Association International Rules for Seed Testing, China Agriculture Press, Beijing, 2017.
12. Berbert, P. A. and M. Berbertviana, "Meyer and schilz function to estimate common bean seed water content evaluated by radiofrequency," Scientia Agricola, Vol. 64, No. 6, 569-574, 2007.
doi:10.1590/S0103-90162007000600002 Google Scholar
13. Grosse, C., "A program for the fitting of Debye, Cole-Cole, Cole-Davidson, and Havriliak-Negami dispersions to dielectric data," Journal of Colloid & Interface Science, Vol. 419, No. 4, 102-106, 2014.
doi:10.1016/j.jcis.2013.12.031 Google Scholar
14. Itolikar, A. B. and M. L. Kurtadikar, "Microwave measurements of dielectric properties of corn vegetation at C-band and comparison with Debye-Cole dual dispersion model," J. Microw. Optoelectron. Electromagn. Appl., Vol. 16, No. 4, 954-965, 2017.
doi:10.1590/2179-10742017v16i41087 Google Scholar
15. Khamzin, A. A., R. R. Nigmatullin, and I. I. Popov, "Microscopic model of a non-Debye dielectric relaxation: The Cole-Cole law and its generalization," Theoretical & Mathematical Physics, Vol. 173, No. 2, 1604-1619, 2012.
doi:10.1007/s11232-012-0135-1 Google Scholar
16. Li, Z., J. Y. Zeng, Q. Chen, and H. Y. Bi, "The measurement and model construction of complex permittivity of vegetation," Science China Earth Sciences, Vol. 57, No. 4, 729-740, 2014.
doi:10.1007/s11430-013-4691-5 Google Scholar
17. Boyarskii, D. A., V. V. Tikhonov, and N. Yu. Komarova, "Model of dielectric constant of bound water in soil for applications of microwave remote sensing," Progress In Electromagnetics Research, Vol. 35, 251-269, 2002.
doi:10.2528/PIER01042403 Google Scholar
18. Cruciani, S. and V. D. Santis, "Cole-Cole vs Debye models for the assessment of electromagnetic fields inside biological tissues produced by wideband EMF sources," Electromagnetic Compatibility, 685-688, 2012. Google Scholar
19. Liu, X.-F., B.-Z. Wang, and S.-Q. Xiao, "Electromagnetic subsurface detection using subspace signal processing and half-space Dyadic Green’s function," Progress In Electromagnetics Research, Vol. 98, 315-331, 2009.
doi:10.2528/PIER09092902 Google Scholar
20. Von Brzeski, J. G. and V. von Brzeski, "Topological intensity shifts of electro-magnetic field in lobachevskian spaces. Olbers paradox solved, deep space communication, and the new electromagnetic method of gravitational wave detection," Progress In Electromagnetics Research, Vol. 43, 163-179, 2003.
doi:10.2528/PIER03032701 Google Scholar
21. Qu, X., Y. Li, G. Fang, and H. Yin, "A portable frequency domain electromagnetic system for shallow metal targets detection," Progress In Electromagnetics Research M, Vol. 53, 167-175, 2017.
doi:10.2528/PIERM16111603 Google Scholar
22. Peng, Q., Q. H. Li, and Q. Zhang, "Application status of the technology of logging while drilling," Advanced Materials Research, 1010-1012, 1650–1653, 2014. Google Scholar
23. Wei, B. J., G. J. Zhang, and Q. Liu, "Recursive algorithm and accurate computation of dyadic Green ’s functions for stratified uniaxial anisotropic media," Science in China: Series F, Vol. 51, No. 1, 63-80, 2017. Google Scholar
24. Jiang, W., "Study on transmission parameter selection and coil design of multi-frequency induction amplitude and phase logging tool,", University of Electronic Science and Technology of China, 2008. Google Scholar