1. Azpurua, M. A., "A semi-analytical method for the design of coil-systems for homogeneous magnetostatic field generation," Progress In Electromagnetics Research B, Vol. 37, 171-189, 2012.
doi:10.2528/PIERB11102606 Google Scholar
2. Bastos, J. P. A. and N. Sadowski, Electromagnetic Modeling by Finite Element Methods, Marcel Dekker, 2003.
doi:10.1201/9780203911174
3. Carley, M., "Evaluation of Biot-Savart integrals on tetrahedral meshes," SIAM Journal on Scientific Computing, 2017. Google Scholar
4. Ciric, I. R., "Simple analytical expressions for the magnetic field of current coils," IEEE Transactions on Magnetics, Vol. 27, No. 1, 669-673, 1991.
doi:10.1109/20.101115 Google Scholar
5. Dular, P., "Modfielisation du champ magnfietique et des courants induits dans des systémes tridimensionnels non linéaires,", Ph. d, Université de Liege, 1996. Google Scholar
6. Dular, P., C. Geuzaine, F. Henrotte, and W. Legros, "A general environment for the treatment of discrete problems and its application to the finite element method," IEEE Transactions on Magnetics, Vol. 34, No. 5, 3395-3398, September 1998.
doi:10.1109/20.717799 Google Scholar
7. Dular, P., L. Krähenbühl, M. V. Ferreira da Luz, P. Kuo-Peng, and C. Geuzaine, "Progressive inductor modeling via a finite element subproblem method," COMPEL, Vol. 34, No. 3, 851-863, May 2015.
doi:10.1108/COMPEL-10-2014-0279 Google Scholar
8. Geuzaine, C. and J.-F. Remacle, "Gmsh: A 3-d finite element mesh generator with built-in pre- and post-processing facilities," International Journal for Numerical Methods in Engineering, Vol. 79, No. 11, 1309-1331, September 2009.
doi:10.1002/nme.2579 Google Scholar
9. Guibert, A., J. L. Coulomb, O. Chadebec, and C. Rannou, "A post-processing integral formulation for the computation of magnetic field in conductors," IEEE Transactions on Magnetics, Vol. 47, No. 5, 1334-1337, 2011.
doi:10.1109/TMAG.2010.2102341 Google Scholar
10. Gyimesi, M. G., D. Lavers, T. Pawlak, and D. Ostergaard, "Biot-savart integration for bars and Arcs," IEEE Transactions on Magnetics, Vol. 29, No. 6, 2389-2391, 1993.
doi:10.1109/20.281007 Google Scholar
11. Lee, H.-B. and H.-J. Song, "Efficient magnetic field calculation method for pancake coil using biot-savart law," 2006 12th Biennial IEEE Conference on Electromagnetic Field Computation, Vol. 27, 193, IEEE, 2006. Google Scholar
12. Ida, N. and J. P. A. Bastos, Electromagnetics and Calculation of Fields, 2nd Ed., Springer, 1997.
doi:10.1007/978-1-4612-0661-3
13. Jackson, J. D., Classical Electrodynamics, 3rd Ed., John Wiley & Sons, 1999.
14. Jin, J.-M., The Finite Element Method in Electromagnetics, 2nd Ed., A Wiley-Interscience Publication, Wiley, 2002.
15. Kalhor, H. A., "Comparison of Ampere’s circuital law (ACL) and the law of Biot-Savart (LBS)," IEEE Transactions on Education, Vol. 31, No. 3, 236-238, 1988.
doi:10.1109/13.2322 Google Scholar
16. Kim, K. C. and J. Lee, "Comparison of Biot Savart simulation and 3D finite element simulation of the electromagnetic forces acting on end windings of electrical machines," 12th Biennial IEEE Conference on Electromagnetic Field Computation, CEFC 2006, Vol. 135, No. 6, 4244, 2006. Google Scholar
17. Landini, M., "About the physical reality of ‘maxwell’s displacement current’ in classical electrodynamics," Progress In Electromagnetics Research, Vol. 144, 329-343, 2014.
doi:10.2528/PIER13111501 Google Scholar
18. Le-Duc, T., O. Chadebec, J.-M. Guichon, and G. Meunier, "New coupling between PEEC method and an integro-differential approach for modeling solid conductors in the presence of magneticconductive thin plates," IET 8th International Conference on Computation in Electromagnetics (CEM 2011), Vol. 19, 30-31, 2011.
doi:10.1049/cp.2011.0023 Google Scholar
19. Le-Van, V., "Développement de formulations intégrales de volume en magnétostatique,", Ph.D, Université Grenoble Alpes - Laboratoire de Génie Electrique de Grenoble, Grenoble, 2015. Google Scholar
20. Meunier, G., The Finite Element Method for Electromagnetic Modeling, John Wiley & Sons, Inc., 2008.
doi:10.1002/9780470611173
21. Modric, T., S. Vujevic, and D. Lovric, "3D computation of the power lines magnetic field," Progress In Electromagnetics Research M, Vol. 41, 1-9, 2015.
doi:10.2528/PIERM14122301 Google Scholar
22. Nunes, A. S., O. Chadebec, P. Kuo-Peng, P. Dular, and G. Meunier, "A coupling between the facet finite element and reluctance network methods in 3-D," IEEE Transactions on Magnetics, Vol. 53, No. 10, 1-10, October 2017.
doi:10.1109/TMAG.2017.2723576 Google Scholar
23. Suh, J.-C., "The evaluation of the biot-savart integral," Journal of Engineering Mathematics, Vol. 37, No. 4, 375-395, 2000.
doi:10.1023/A:1004666000020 Google Scholar
24. Urankar, L., "Vector potential and magnetic field od current-carrying finite arc segment in analytical form, Part III: Exact computation for rectangular cross section," IEEE Transactions on Magnetics, Vol. 18, No. 6, 1860-1867, 1982.
doi:10.1109/TMAG.1982.1062166 Google Scholar
25. Urankar, L., "Vector potential and magnetic field of current-carying finite arc segment in analytical form, part II: Thin sheet approximation," IEEE Transactions on Magnetics, Vol. 18, No. 3, 911-917, May 1982.
doi:10.1109/TMAG.1982.1061927 Google Scholar
26. Urankar, L., "Vector potential and magnetic field of current-carrying finite arc segment in analytical form, part IV: General three-dimensional current density," IEEE Trans. Magn., Vol. 20, No. 6, 2145-2150, November 1984.
doi:10.1109/TMAG.1984.1063579 Google Scholar
27. Urankar, L., "Vector potential and magnetic field of current-carrying circular finite arc segment in analytical form - Part V. Polygon cross section," IEEE Transactions on Magnetics, Vol. 26, No. 3, 1171-1180, May 1990.
doi:10.1109/20.53995 Google Scholar
28. Urankar, L. and P. Henninger, "Compact extended algorithms for elliptic integrals in electromagnetic field and potential computations. I. Elliptic integrals of the first and second kind with extended integration range," IEEE Transactions on Magnetics, Vol. 27, No. 5, 4338-4342, September 1991.
doi:10.1109/20.105059 Google Scholar
29. Volkmar, C., T. Baruth, J. Simon, U. Ricklefs, and R. Thueringer, "Arbitrarily shaped coils’ inductance simulation based on a 3-dimensional solution of the Biot-Savart law," Proceedings of the International Spring Seminar on Electronics Technology, No. 1, 210-215, 2013.
doi:10.1109/ISSE.2013.6648244 Google Scholar
30. Weggel, C. F. and D. P. Schwartz, "New analytical formulas for calculating magnetic field," IEEE Transactions on Magnetics, Vol. 24, No. 2, 1544-1547, March 1988.
doi:10.1109/20.11540 Google Scholar
31. Wilton, D., S. Rao, A. Glisson, D. Schaubert, O. Al-Bundak, and C. Butler, "Potential integrals for uniform and linear source distributions on polygonal and polyhedral domains," IEEE Transactions on Antennas and Propagation, Vol. 32, No. 3, 276-281, March 1984.
doi:10.1109/TAP.1984.1143304 Google Scholar
32. Wu, J.-Z., H.-Y. Ma, and M.-D. Zhou, Vorticity and Vortex Dynamics, Springer Berlin Heidelberg, 2007.