1. Araque Quijano, J. L. and G. Vecchi, "Field and source equivalence in source reconstruction on 3D surfaces," Progress In Electromagnetics Research, Vol. 103, 67-100, 2010.
doi:10.2528/PIER10030309 Google Scholar
2. Persson, K. and M. Gustason, "Reconstruction of equivalent currents using a near-field data transformation-with radome applications," Progress In Electromagnetics Research, Vol. 54, 179-198, 2005.
doi:10.2528/PIER04111602 Google Scholar
3. Sarkar, T. K., P. Petre, A. Taaghol, and R. F. Harrington, "An alternative spherical near field to far field transformation," Progress In Electromagnetics Research, Vol. 16, 269-284, 1997.
doi:10.2528/PIER96060600 Google Scholar
4. Li, P. and L. J. Jiang, "The far field transformation for the antenna modeling based on spherical electric field measurements," Progress In Electromagnetics Research, Vol. 123, 243-261, 2012.
doi:10.2528/PIER11102301 Google Scholar
5. Alvarez, Y., F. Las-Heras, and M. R. Pino, "On the comparison between the spherical wave expansion and the sources reconstruction method," IEEE Trans. Antennas Propag., Vol. 56, No. 10, 3337-3341, 2008.
doi:10.1109/TAP.2008.929519 Google Scholar
6. Crocco, L. and M. D’Urso, "The contrast source-extended Born model for 2D subsurface scattering problems," Progress In Electromagnetics Research B, Vol. 17, 343-359, 2009.
doi:10.2528/PIERB09080502 Google Scholar
7. Chew, W. C. and Y. M. Wang, "Reconstruction of two-dimensional permittivity distribution using the distorted Born iterative method," IEEE Trans. Med. Imag., Vol. 9, No. 2, 218-225, 1990.
doi:10.1109/42.56334 Google Scholar
8. Caorsi, S., G. L. Gragnani, S. Medicina, M. Pastorino, and G. A. Pinto, "A Gibbs random field-based active electromagnetic method for noninvasive diagnostics in biomedical applications," Radio Sci., Vol. 30, 291-301, 1995.
doi:10.1029/94RS00831 Google Scholar
9. Yu, Y. and L. Carin, "Three-dimensional Bayesian inversion with application to subsurface sensing," IEEE Trans. Geosci. Remote Sens., Vol. 45, No. 5, 1258-1270, 2007.
doi:10.1109/TGRS.2007.894932 Google Scholar
10. Chen, M. S., F. L. Liu, H. M. Du, and X. L. Wu, "Compressive sensing for fast analysis of wide-angle monostatic scattering problems," IEEE Antennas Wireless Propag. Lett., Vol. 10, 1243-1246, 2011.
doi:10.1109/LAWP.2011.2174190 Google Scholar
11. Kleinman, R. E. and P. M. van den Berg, "Two-dimensional location and shape reconstruction," Radio Sci., Vol. 29, 1157-1169, 1994.
doi:10.1029/93RS03445 Google Scholar
12. Sun, S., B. J. Kooij, and A. Yarovoy, "Linearized three-dimensional electromagnetic contrast source inversion and its applications to half-space configurations," IEEE Trans. Geosci. Remote Sens., Vol. 55, No. 6, 3475-3487, 2017.
doi:10.1109/TGRS.2017.2672861 Google Scholar
13. Shan, T., X. W. Dang, M. K. Li, F. Yang, S. H. Xu, and J. Wu, "Study on a Poisson’s equation solver based on deep learning technique,", arXiv:1712.05559, 2017. Google Scholar
14. Yao, H., L. Jiang, and Y. Qin, "Machine learning based method of moments (ML-MoM)," Proceedings of 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, San Diego, USA, July 2017. Google Scholar
15. Shan, T., X. W. Dang, M. K. Li, F. Yang, S. H. Xu, and J. Wu, "Study on a 3D Possion’s equation solver based on deep learning technique," Proceedings of IEEE Int. Conf. Computational Electromagnetics, Chengdu, China, March 2018. Google Scholar
16. Zhang, H. H. and R. S. Chen, "Coherent processing and superresolution technique of multi-band radar data based on fast sparse bayesian learning algorithm," IEEE Trans. Antennas Propag., Vol. 62, No. 12, 6217-6227, 2014.
doi:10.1109/TAP.2014.2361158 Google Scholar
17. Ayestarn, R. G., F. L. Heras, and L. F. Herran, "High accuracy neural network-based array synthesis including element coupling," IEEE Antennas Wireless Propag. Lett., Vol. 5, No. 1, 45-48, 2006.
doi:10.1109/LAWP.2006.870366 Google Scholar
18. Ayestarn, R. G. and F. L. Heras, "Neural networks and equivalent source reconstruction for real antenna array synthesis," Electron. Lett., Vol. 39, No. 13, 956-958, 2003.
doi:10.1049/el:20030626 Google Scholar
19. Ayestarn, R. G. and F. L. Heras, "Near filed to far field transformation using neural networks and source reconstruction," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 15, 2201-2213, 2006.
doi:10.1163/156939306779322594 Google Scholar
20. Krizhevsky, A., I. Sutskever, and G. Hinton, "ImageNet classification with deep convolutional neural networks," Proc. Neural Information and Processing Systems, 2012. Google Scholar
21. Zhang, Y., D. Zhao, J. Sun, G. Zou, and W. Li, "Adaptive convolutional neural network and its application in face recognition," Neural Processing Letters, Vol. 43, No. 2, 389-399, 2015.
doi:10.1007/s11063-015-9420-y Google Scholar
22. Dong, C., C. Loy, K. He, and X. Tang, "Image super-resolution using deep convolutional networks," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 38, No. 2, 295-307, 2016.
doi:10.1109/TPAMI.2015.2439281 Google Scholar
23. Sahiner, B., H.-P. Chan, N. Petrick, D. Wei, M. Helvie, D. Adler, and M. Goodsitt, "Classification of mass and normal breast tissue: a convolution neural network classifier with spatial domain and texture images," IEEE Transactions on Medical Imaging, Vol. 15, No. 5, 598-610, 1996.
doi:10.1109/42.538937 Google Scholar
24. Hornik, K., M. Stinchcombe, and H. White, "Multilayer feedforward networks are universal approximators," Neural Netw., Vol. 2, No. 5, 359-366, 1989.
doi:10.1016/0893-6080(89)90020-8 Google Scholar
25. Hoang, N., "On node distributions for interpolation and spectral methods," Mathematics of Computation, Vol. 85, No. 298, 667-692, 2015.
doi:10.1090/mcom/3018 Google Scholar
26. Labate, G., L. Matekovits, and S. Podilchak, "A methodology for translating non-radiating sources in design parameters of cloaking devices," Proceedings of 2016 IEEE International Symposium on Antennas and Propagation (APSURSI), Fajardo, Puerto Rico, June 2016. Google Scholar
27. Fiddy, M. A. and R. S. Ritter, Introduction to Imaging from Scattered Fields, CRC Press, 2014.
doi:10.1201/b17623
28. Hansen, P., Discrete Inverse Problems: Insight and Algorithms, SIAM, 2010.
doi:10.1137/1.9780898718836
29. Kim, P., MATLAB Deep Learning, Apress, 2017.
doi:10.1007/978-1-4842-2845-6
30. Ng, A. Y., "Feature Selection L1 vs. L2 Regularization and Rotational Invariance," Proceedings of 21st Int’l Conf. Machine Learning, 78-86, 2004. Google Scholar
31. Cong, J. and B. Xiao, "Minimizing computation in convolutional neural networks," Proceedings of Int. Conf. Artif. Neural Netw., 281-290, 2014. Google Scholar
32. Tan, Z., Y. C. Eldar, and A. Nehorai, "Direction of arrival estimation using co-prime arrays: A super resolution viewpoint," IEEE Trans. Signal Process., Vol. 62, No. 21, 5565-5576, 2014.
doi:10.1109/TSP.2014.2354316 Google Scholar
33. Zhang, X., L. Y. Xu, L. Xu, and D. Xu, "Direction of departure (DOD) and direction of arrival (DOA) estimation in MIMO radar with reduced-dimension MUSIC," IEEE Commun. Lett., Vol. 14, No. 12, 1161-1163, 2010.
doi:10.1109/LCOMM.2010.102610.101581 Google Scholar