Vol. 76
Latest Volume
All Volumes
PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-11-27
Applying Convolutional Neural Networks for the Source Reconstruction
By
Progress In Electromagnetics Research M, Vol. 76, 91-99, 2018
Abstract
This paper proposes a novel source reconstruction method (SRM) based on the convolutional neural network algorithm. The conventional SRM method usually requires the scattered field data oversampled compared to that of target object grids. To achieve higher accuracy, the conventional SRM numerical system is highly singular. To overcome these difficulties, we model the equivalent source reconstruction process using the machine learning. The equivalent sources of the target are constructed by a convolutional neural networks (ConvNets). It allows us to employless scattered field samples or radar cross section (RCS) data. And the ill-conditioned numerical system is effectively avoided. Numerical examples are provided to demonstrate the validity and accuracy of the proposed approach. Comparison with the traditional NN is also benchmarked. We further expand the proposed method into the direction of arrival (DOA) estimation to demonstrate the generality of the proposed procedure.
Citation
He Ming Yao, Wei E. I. Sha, and Li Jun Jiang, "Applying Convolutional Neural Networks for the Source Reconstruction," Progress In Electromagnetics Research M, Vol. 76, 91-99, 2018.
doi:10.2528/PIERM18082907
References

1. Araque Quijano, J. L. and G. Vecchi, "Field and source equivalence in source reconstruction on 3D surfaces," Progress In Electromagnetics Research, Vol. 103, 67-100, 2010.
doi:10.2528/PIER10030309

2. Persson, K. and M. Gustason, "Reconstruction of equivalent currents using a near-field data transformation-with radome applications," Progress In Electromagnetics Research, Vol. 54, 179-198, 2005.
doi:10.2528/PIER04111602

3. Sarkar, T. K., P. Petre, A. Taaghol, and R. F. Harrington, "An alternative spherical near field to far field transformation," Progress In Electromagnetics Research, Vol. 16, 269-284, 1997.
doi:10.2528/PIER96060600

4. Li, P. and L. J. Jiang, "The far field transformation for the antenna modeling based on spherical electric field measurements," Progress In Electromagnetics Research, Vol. 123, 243-261, 2012.
doi:10.2528/PIER11102301

5. Alvarez, Y., F. Las-Heras, and M. R. Pino, "On the comparison between the spherical wave expansion and the sources reconstruction method," IEEE Trans. Antennas Propag., Vol. 56, No. 10, 3337-3341, 2008.
doi:10.1109/TAP.2008.929519

6. Crocco, L. and M. D’Urso, "The contrast source-extended Born model for 2D subsurface scattering problems," Progress In Electromagnetics Research B, Vol. 17, 343-359, 2009.
doi:10.2528/PIERB09080502

7. Chew, W. C. and Y. M. Wang, "Reconstruction of two-dimensional permittivity distribution using the distorted Born iterative method," IEEE Trans. Med. Imag., Vol. 9, No. 2, 218-225, 1990.
doi:10.1109/42.56334

8. Caorsi, S., G. L. Gragnani, S. Medicina, M. Pastorino, and G. A. Pinto, "A Gibbs random field-based active electromagnetic method for noninvasive diagnostics in biomedical applications," Radio Sci., Vol. 30, 291-301, 1995.
doi:10.1029/94RS00831

9. Yu, Y. and L. Carin, "Three-dimensional Bayesian inversion with application to subsurface sensing," IEEE Trans. Geosci. Remote Sens., Vol. 45, No. 5, 1258-1270, 2007.
doi:10.1109/TGRS.2007.894932

10. Chen, M. S., F. L. Liu, H. M. Du, and X. L. Wu, "Compressive sensing for fast analysis of wide-angle monostatic scattering problems," IEEE Antennas Wireless Propag. Lett., Vol. 10, 1243-1246, 2011.
doi:10.1109/LAWP.2011.2174190

11. Kleinman, R. E. and P. M. van den Berg, "Two-dimensional location and shape reconstruction," Radio Sci., Vol. 29, 1157-1169, 1994.
doi:10.1029/93RS03445

12. Sun, S., B. J. Kooij, and A. Yarovoy, "Linearized three-dimensional electromagnetic contrast source inversion and its applications to half-space configurations," IEEE Trans. Geosci. Remote Sens., Vol. 55, No. 6, 3475-3487, 2017.
doi:10.1109/TGRS.2017.2672861

13. Shan, T., X. W. Dang, M. K. Li, F. Yang, S. H. Xu, and J. Wu, "Study on a Poisson’s equation solver based on deep learning technique,", arXiv:1712.05559, 2017.

14. Yao, H., L. Jiang, and Y. Qin, "Machine learning based method of moments (ML-MoM)," Proceedings of 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, San Diego, USA, July 2017.

15. Shan, T., X. W. Dang, M. K. Li, F. Yang, S. H. Xu, and J. Wu, "Study on a 3D Possion’s equation solver based on deep learning technique," Proceedings of IEEE Int. Conf. Computational Electromagnetics, Chengdu, China, March 2018.

16. Zhang, H. H. and R. S. Chen, "Coherent processing and superresolution technique of multi-band radar data based on fast sparse bayesian learning algorithm," IEEE Trans. Antennas Propag., Vol. 62, No. 12, 6217-6227, 2014.
doi:10.1109/TAP.2014.2361158

17. Ayestarn, R. G., F. L. Heras, and L. F. Herran, "High accuracy neural network-based array synthesis including element coupling," IEEE Antennas Wireless Propag. Lett., Vol. 5, No. 1, 45-48, 2006.
doi:10.1109/LAWP.2006.870366

18. Ayestarn, R. G. and F. L. Heras, "Neural networks and equivalent source reconstruction for real antenna array synthesis," Electron. Lett., Vol. 39, No. 13, 956-958, 2003.
doi:10.1049/el:20030626

19. Ayestarn, R. G. and F. L. Heras, "Near filed to far field transformation using neural networks and source reconstruction," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 15, 2201-2213, 2006.
doi:10.1163/156939306779322594

20. Krizhevsky, A., I. Sutskever, and G. Hinton, "ImageNet classification with deep convolutional neural networks," Proc. Neural Information and Processing Systems, 2012.

21. Zhang, Y., D. Zhao, J. Sun, G. Zou, and W. Li, "Adaptive convolutional neural network and its application in face recognition," Neural Processing Letters, Vol. 43, No. 2, 389-399, 2015.
doi:10.1007/s11063-015-9420-y

22. Dong, C., C. Loy, K. He, and X. Tang, "Image super-resolution using deep convolutional networks," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 38, No. 2, 295-307, 2016.
doi:10.1109/TPAMI.2015.2439281

23. Sahiner, B., H.-P. Chan, N. Petrick, D. Wei, M. Helvie, D. Adler, and M. Goodsitt, "Classification of mass and normal breast tissue: a convolution neural network classifier with spatial domain and texture images," IEEE Transactions on Medical Imaging, Vol. 15, No. 5, 598-610, 1996.
doi:10.1109/42.538937

24. Hornik, K., M. Stinchcombe, and H. White, "Multilayer feedforward networks are universal approximators," Neural Netw., Vol. 2, No. 5, 359-366, 1989.
doi:10.1016/0893-6080(89)90020-8

25. Hoang, N., "On node distributions for interpolation and spectral methods," Mathematics of Computation, Vol. 85, No. 298, 667-692, 2015.
doi:10.1090/mcom/3018

26. Labate, G., L. Matekovits, and S. Podilchak, "A methodology for translating non-radiating sources in design parameters of cloaking devices," Proceedings of 2016 IEEE International Symposium on Antennas and Propagation (APSURSI), Fajardo, Puerto Rico, June 2016.

27. Fiddy, M. A. and R. S. Ritter, Introduction to Imaging from Scattered Fields, CRC Press, 2014.
doi:10.1201/b17623

28. Hansen, P., Discrete Inverse Problems: Insight and Algorithms, SIAM, 2010.
doi:10.1137/1.9780898718836

29. Kim, P., MATLAB Deep Learning, Apress, 2017.
doi:10.1007/978-1-4842-2845-6

30. Ng, A. Y., "Feature Selection L1 vs. L2 Regularization and Rotational Invariance," Proceedings of 21st Int’l Conf. Machine Learning, 78-86, 2004.

31. Cong, J. and B. Xiao, "Minimizing computation in convolutional neural networks," Proceedings of Int. Conf. Artif. Neural Netw., 281-290, 2014.

32. Tan, Z., Y. C. Eldar, and A. Nehorai, "Direction of arrival estimation using co-prime arrays: A super resolution viewpoint," IEEE Trans. Signal Process., Vol. 62, No. 21, 5565-5576, 2014.
doi:10.1109/TSP.2014.2354316

33. Zhang, X., L. Y. Xu, L. Xu, and D. Xu, "Direction of departure (DOD) and direction of arrival (DOA) estimation in MIMO radar with reduced-dimension MUSIC," IEEE Commun. Lett., Vol. 14, No. 12, 1161-1163, 2010.
doi:10.1109/LCOMM.2010.102610.101581