Vol. 76
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-11-20
Performance Enhancement of Ag-Au Bimetallic Surface Plasmon Resonance Biosensor Using InP
By
Progress In Electromagnetics Research M, Vol. 76, 31-42, 2018
Abstract
Performance improvement of couple silver (Ag) - gold (Au) based bimetallic surface plasmon resonance (SPR) sensor using a thin indium phosphide (InP) layer and an air gap layer is presented. Through detailed investigations quantitative insight into the dependence of different performance parameters including sensitivity factor (SF), sensor merit (SM), full width at half maximum (FWHM) and combined sensitivity factor (CSF) on stack structure, thickness and material parameters has been observed. Integration of thin InP layer on the metallic layer and inclusion of the air gap between glass prism and adsorption layer enhance both the sensitivity (70.90˚/RIU) and the CSF (372.8 RIU-1). Without InP layer the sensitivity is 65.66˚/RIU, and CSF is 178.5 RIU-1 whereas without the air gap the sensitivity is 66.29˚/RIU, and the CSF is 285.0 RIU-1. Compared to similar bimetallic SPR sensors that have been reported in recent literatures, sensitivity and overall figure of merit of the proposed sensor are far better. The presented biosensor's capability to detect the variation of 1/1000 of RIU of the sensing medium (corresponding to subtle concentration change of the analyte) has been demonstrated.
Citation
Hasan Khaled Rouf Tauhidul Haque , "Performance Enhancement of Ag-Au Bimetallic Surface Plasmon Resonance Biosensor Using InP ," Progress In Electromagnetics Research M, Vol. 76, 31-42, 2018.
doi:10.2528/PIERM18092503
http://www.jpier.org/PIERM/pier.php?paper=18092503
References

1. Nylander, C., B. Liedberg, and T. Lind, "Gas detection by means of surface plasmons resonance," Sensors and Actuators, Vol. 3, 79-88, 1982.
doi:10.1016/0250-6874(82)80008-5

2. Liedberg, B., C. Nylander, and I. Lundström, "Surface plasmons resonance for gas detection and biosensing," Sensors and Actuators, Vol. 4, 299-304, 1983.
doi:10.1016/0250-6874(83)85036-7

3. Viti, L., J. Hu, D. Coquillat, A. Politano, W. Knap, and M. S. Vitiello, "Efficient terahertz detection in black-phosphorus nano-transistors with selective and controllable plasma-wave, bolometric and thermoelectric response," Scientific Reports, Vol. 6, 20474, 2016.
doi:10.1038/srep20474

4. Viti, L., D. Coquillat, A. Politano, K. A. Kokh, Z. S. Aliev, M. B. Babanly, O. E. Tereshchenko, W. Knap, E. V. Chulkov, and M. S. Vitiell, "Plasma-wave terahertz detection mediated by topological insulators surface states," Nano Letters, Vol. 16, No. 1, 80-87, 2016.
doi:10.1021/acs.nanolett.5b02901

5. Shalabney, A. and I. Abdulhalim, "Sensitivity-enhancement methods for surface plasmon sensors," Laser & Photonic Reviews, Vol. 5, No. 4, 571-606, 2011.
doi:10.1002/lpor.201000009

6. Viti, L., A. Politano, and M. S. Vitiello, "Black phosphorus nanodevices at terahertz frequencies: Photodetectors and future challenges," APL Materials, Vol. 5, No. 3, 2017.
doi:10.1063/1.4979090

7. Agarwal, A., M. S. Vitiello, L. Viti, A. Cupolillo, and A. Politano, "Plasmonics with two-dimensional semiconductors: From basic research to technological applications," Nanoscale, Vol. 10, 8938-8946, 2018.
doi:10.1039/C8NR01395K

8. Politano, A., L. Viti, and M. Vitiello, "Optoelectronic devices, plasmonics, and photonics with topological insulators," APL Materials, Vol. 5, No. 3, 2017.
doi:10.1063/1.4977782

9. Politano, A., A. Cupolillo, G. D. Profio, H. Arafat, G. Chiarello, and E. Curcio, "When plasmonics meets membrane technology," Journal of Physics Condensed Matter, Vol. 28, No. 36, 2016.
doi:10.1088/0953-8984/28/36/363003

10. Szunerits, S., N. Maalouli, E. Wijaya, J. Vilcot, and R. Boukherroub, "Recent advances in the development of graphene-based surface plasmon resonance (SPR) interfaces," Analytical and Bioanalytical Chemistry, Vol. 405, No. 5, 1435-1443, 2013.
doi:10.1007/s00216-012-6624-0

11. Lecaruyer, P., M. Canva, and J. Rolland, "Metallic film optimization in a surface plasmon resonance biosensor by the extended Rouard method," Applied Optics, Vol. 46, No. 12, 2361, 2007.
doi:10.1364/AO.46.002361

12. Politano, A. and G. Chiarello, "The influence of electron confinement, quantum size effects, and film morphology on the dispersion and the damping of plasmonic modes in Ag and Au thin films," Progress in Surface Science, Vol. 90, No. 2, 144-193, 2015.
doi:10.1016/j.progsurf.2014.12.002

13. Politano, A., "Low-energy collective electronic mode at a noble metal interface," Plasmonics, Vol. 8, No. 2, 357-360, 2013.
doi:10.1007/s11468-012-9397-6

14. Politano, A., V. Formoso, and G. Chiarello, "Dispersion and damping of gold surface plasmon," Plasmonics, Vol. 3, No. 4, 165-170, 2008.
doi:10.1007/s11468-008-9070-2

15. Homola, J., "On the sensitivity of surface plasmon resonance sensors with spectral interrogation," Sensors and Actuators B: Chemical, Vol. 41, No. 1-3, 207-211, 1997.
doi:10.1016/S0925-4005(97)80297-3

16. Yuan, X., B. Ong, Y. Tan, D. Zhang, R. Irawan, and S. Tjin, "Sensitivity-stability-optimized surface plasmon resonance sensing with double metal layers," Journal of Optics A: Pure and Applied Optics, Vol. 8, No. 11, 959-963, 2006.
doi:10.1088/1464-4258/8/11/005

17. Ghorbanpour, M., "Optimization of sensitivity and stability of gold/silver bi-layer thin films used in surface plasmon resonance chips," Journal of Nanostructures, Vol. 3, 309-313, 2013.

18. Chen, Y., R. S. Zheng, D. G. Zhang, Y. H. Lu, P. Wang, H. Ming, Z. F. Luo, and Q. Kan, "Bimetallic chips for a surface plasmon resonance instrument," Applied Optics, Vol. 50, No. 3, 387-391, 2011.
doi:10.1364/AO.50.000387

19. Tran, N. H. T., B. T. Phan, W. J. Yoon, S. Khym, and H. Ju, "Dielectric metal-based multilayers for surface plasmon resonance with enhanced quality factor of the plasmonic waves," Journal of Electronic Materials, Vol. 46, No. 6, 3654-3659, 2017.
doi:10.1007/s11664-017-5375-2

20. Chien, F.-C. and S.-J. Chen, "A sensitivity comparison of optical biosensors based on four different surface plasmon resonance modes," Biosensors and Bioelectronics, Vol. 20, No. 3, 633-642, 2004.
doi:10.1016/j.bios.2004.03.014

21. Aspnes, D. E. and A. A. Studna, "Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV," Physical Review B, Vol. 27, 985-1009, 1983.
doi:10.1103/PhysRevB.27.985

22. Lahav, A., M. Auslender, and I. Abdulhalim, "Sensitivity enhancement of guided-wave surface-plasmon resonance sensors," Optics Letters, Vol. 33, No. 21, 2539-2541, 2008.
doi:10.1364/OL.33.002539

23. Vlček, J., J. Pištora, and M. Lesnák, "Sensitivity enhancement in surface plasmon resonance sensors - Theoretical modeling," Proceedings SPIE, Vol. 7356, 735622, 2009.

24. Ong, B. H., X. Yuan, S. C. Tjin, J. Zhang, and H. M. Ng, "Optimized film thickness for maximum evanescent field enhancement of a bimetallic film surface plasmon resonance biosensor," Sensors and Actuators B: Chemical, Vol. 114, No. 2, 1028-1034, 2006.
doi:10.1016/j.snb.2005.07.064

25. Johnson, P. B. and R. W. Christy, "Optical constants of the noble metals," Physical Review B, Vol. 6, 4370-4379, 1972.
doi:10.1103/PhysRevB.6.4370

26. Johnson, P. B. and R. W. Christy, "Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd," Physical Review B, Vol. 9, 5056-5070, 1974.
doi:10.1103/PhysRevB.9.5056

27. Verma, A., A. Prakash, and R. Tripathi, "Sensitivity enhancement of surface plasmon resonance biosensor using graphene and air gap," Optics Communications, Vol. 357, 106-112, 2015.
doi:10.1016/j.optcom.2015.08.076

28. Yu, Z. and S. Fan, "Extraordinarily high spectral sensitivity in refractive index sensors using multiple optical modes," Optics Express, Vol. 19, No. 11, 10029-10040, 2011.
doi:10.1364/OE.19.010029

29. Zeng, S., K. V. Sreekanth, J. Shang, T. Yu, C.-K. Chen, F. Yin, D. Baillargeat, P. Coquet, H.-P. Ho, A. V. Kabashin, and K.-T. Yong, "Graphene-gold metasurface architectures for ultra sensitive plasmonic biosensing," Advanced Materials, Vol. 27, No. 40, 6163-6169, 2015.
doi:10.1002/adma.201501754

30. Zhernovaya, O., O. Sydoruk, V. Tuchin, and A. Douplik, "The refractive index of human hemoglobin in the visible range," Physics in Medicine and Biology, Vol. 56, No. 13, 4013-4021, 2011.
doi:10.1088/0031-9155/56/13/017