Vol. 90
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2019-01-14
A Novel Dual-Passband Net-Shaped FSS Structure Used for MIMO Antennas
By
Progress In Electromagnetics Research C, Vol. 90, 29-39, 2019
Abstract
A dual-passband frequency selective surface (FSS) is designed in this paper. Two passbands are 2-3.4 GHz and 5.5-6.8 GHz, respectively. It is used as a spatial filter to improve the radiation and scattering performance of an antenna. The structure is combined with two layers. One is metal, and the other is intermediate medium. The requirements of wide-band, polarization-independent, wide incidence angle and miniaturized FSS with a thickness of only 0.0085λ are achieved by parameter optimization. When the FSS is used to improve the proposed microstrip antenna, the relative bandwidth can be increased by 31.4% and 50%, and the peak gain is increased by 2.53 dB and 1.86 dB at 5.8 GHz and 6.4 GHz, respectively. Meanwhile, the maximum RCS reduction of the microstrip antenna is 16 dB. On the other hand, the FSS is able to be applied to a dipole antenna to improve the transmission coefficient and phase. Simulation and measurement results of the transmission coefficient and phase of the antenna are almost the same.
Citation
Zhiwei Liu Shunli Jie Haitao Ma Xiao-Yan Zhang Beibei Xing , "A Novel Dual-Passband Net-Shaped FSS Structure Used for MIMO Antennas," Progress In Electromagnetics Research C, Vol. 90, 29-39, 2019.
doi:10.2528/PIERC18101501
http://www.jpier.org/PIERC/pier.php?paper=18101501
References

1. Wu, T. K., Frequency Selective Surface and Grid Array, Wiley, 1995.

2. Raspopoulos, M. and S. Stavrou, "Frequency selective buildings through frequency selective surfaces," IEEE Trans. Antennas Propag., Vol. 59, No. 8, 2998-3005, 2011.
doi:10.1109/TAP.2011.2158779

3. Kiani, G. I., L. G. Olsson, A. Karlsson, K. P. Esselle, and M. Nilsson, "Cross-dipole bandpass frequency selective surface for energy-saving glass used in buildings," IEEE Trans. Antennas Propag., Vol. 59, No. 2, 520-525, 2011.
doi:10.1109/TAP.2010.2096382

4. Ranga, Y., L. Matekovits, S. G. Hay, and T. S. Bird, "An anisotropic impedance surface for dual-band linear-to-circular transmission polarization convertor," International Workshop on Antenna Technology (iWAT), 2013.

5. Yeo, W., N. K. Nahar, and K. Sertel, "FAR-Ir multiband dual polarization perfect absorber for wide incident angles," Microwave and Optical Technology Letters, Vol. 55, No. 3, 632-636, 2013.
doi:10.1002/mop.27387

6. Goussetis, G. and A. P. Feresidis, "Perturbed frequency selective surfaces for multiband high impedance surfaces," IET Microwave Antennas Propagation, Vol. 4, No. 8, 1105-1110, 2010.
doi:10.1049/iet-map.2009.0586

7. Campos, A. L. P. S., S. F. C. G. Segundo, R. H. C. Manic, G. A. Neto, and A. G. D. Assunc, "A simple fractal geometry to design multiband frequency selective surfaces," Microwave and Optical Technology Letters, Vol. 54, No. 10, 2321-2325, 2012.
doi:10.1002/mop.27045

8. Jamil, A., M. Z. Yusoff, and N. Yahya, "Compact SRR based band stop filter for isolation in WLAN band in MIMO," IEEE Student Conference on Research and Development, 370-373, 2013.

9. Zhong, J., Y. Huang, G. Wen, H. Sun, O. Gordon, and W. Zhu, "Dual-band negative permittivity metamaterial based on cross circular loop resonator with shorting stubs," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 803-806, 2012.
doi:10.1109/LAWP.2012.2208172

10. Miyamaru, F., S. Kubota, and T. Nakanishi, "Transmission properties of double-gap asymmetric split ring resonators in terahertz region," Applied Physics Letters, Vol. 101, No. 5, 051112-1-051112-5, 2011.

11. Lahiri, B., S. G. McMeekin, and R. M. De La Rue, "Resonance hybridization in nano antenna arrays based on asymmetric split-ring resonators," Applied Physics Letters, Vol. 98, No. 15, 153116-1-153116-3, 2011.
doi:10.1063/1.3579537

12. Costa, F., A. Monorchio, and G. Manara, "Efficient analysis of frequency-selective surfaces by a simple equivalent-circuit model," IEEE Antennas Propagation Magazine, Vol. 54, No. 4, 35-48, 2012.
doi:10.1109/MAP.2012.6309153

13. Kim, G. and B. Hong, "An object transition flow model of test data set for simulation of RFID applications," IEEE International Conference on e-Business Engineering (ICEBE), 2014.

14. Huang, H., P. Zhao, P.-Y. Chen, Y. Ren, X. Liu, M. Ferrari, H. Ye, and D. Akinwande, "RFID tag helix antenna sensors for wireless drug dosage monitoring," IEEE Translational Engineering in Health and Medicine, Vol. 2, No. 2, 1700108-1-1700108-8, 2014.

15. Lazaro, A., A. Ramos, D. Girbau, and R. Villarino, "A novel UWB RFID tag using active frequency selective surface," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 3, 1155-1164, 2013.
doi:10.1109/TAP.2012.2228838

16. Carelli, P., F. Chiarello, S. Cibella, G. A. Di, R. Leoni, M. Ortolani, and G. Torrioli, "A fast terahertz spectrometer based on frequency selective surface filters," Infrared Milli. Terahz. Waves, Vol. 33, No. 3, 505-512, 2012.
doi:10.1007/s10762-012-9884-z

17. De Lima E Silva, T. and A. L. P. S. Campos, "Formulation of double screen FSS analysis using Fullwave method," IEEE Microwave Optoelectronics Conference, 512-516, 2012.

18. Silva, T. D. L. E. and A. L. P. S. Campos, "Formulation of double screen FSS analysis using Fullwave method," IEEE Microwave Optoelectronics Conference, 512-516, 2012.

19. Majumdar, P., Z. Zhao, and C. Ji, "Equivalent circuit model of multilayer double square loop FSS using vector-fitting," IEEE International Symposium on Antennas and Propagation, 1276-1277, 2015.