1. Bhatti, A. R., "A comprehensive overview of electric vehicle charging using renewable energy," International Journal of Power Electronics & Drive Systems, Vol. 7, No. 1, 114-123, Mar. 2016. Google Scholar
2. Chuen, I. P. S., "Charging support in Battery Electric Vehicle (BEV) development," 2017 7th International Conference on Power Electronics Systems and Applications — Smart Mobility, Power Transfer & Security (PES, 1-4, Hong Kong, 2017. Google Scholar
3. Zheng, Y., "Online distributed MPC-based optimal scheduling for EV charging stations in distribution systems," IEEE Transactions on Industrial Informatics, 1-1, 2018.
doi:10.1109/TII.2010.2089465 Google Scholar
4. Zhang, W., "Decentralized electric vehicle charging strategies for reduced load variation and guaranteed charge completion in regional distribution grids," Energies, Vol. 10, No. 2, 147, Jan. 2017.
doi:10.3390/en10020147 Google Scholar
5. Liu, F., "Transmitter-side control of both the CC and CV modes for the wireless EV charging system with the weak communication," IEEE Journal of Emerging & Selected Topics in Power Electronics, Vol. 6, No. 2, 955-965, Oct. 2018.
doi:10.1109/JESTPE.2017.2759581 Google Scholar
6. Purwadi, A., "Analysis of power converters for high frequency resonant inductive electric vehicle charging system," 2016 3rd Conference on Power Engineering and Renewable Energy, 159-164, 2017. Google Scholar
7. Hata, K., "Proposal of classification and design strategies for wireless power transfer based on specification of transmitter-side and receiver-side voltages and power requirements," IEEJ Transactions on Industry Applications, Vol. 138, No. 4, 330-339, Apr. 2018.
doi:10.1541/ieejias.138.330 Google Scholar
8. Fujita, T., "Fundamental discussion on a wireless power transfer system equipped with a common secondary coil during parking and driving," IEEJ Transactions on Industry Applications, Vol. 136, No. 8, 522-531, Aug. 2016.
doi:10.1541/ieejias.136.522 Google Scholar
9. Kan, T., "A new integration method for an electric vehicle wireless charging system using LCC compensation topology: Analysis and design," IEEE Transactions on Power Electronics, Vol. 32, No. 2, 1638-1650, Apr. 2017.
doi:10.1109/TPEL.2016.2552060 Google Scholar
10. Imura, T., "Wireless power transfer for electric vehicle at the kilohertz band," IEEJ Transactions on Electrical & Electronic Engineering, Vol. 11, No. S2, S91-S99, Apr. 2016.
doi:10.1002/tee.22340 Google Scholar
11. Knaisch, K., "Gaussian process surrogate model for the design of circular, planar coils used in inductive power transfer for electric vehicles," IET Power Electronics, Vol. 9, No. 15, 2786-2794, Dec. 2016.
doi:10.1049/iet-pel.2016.0392 Google Scholar
12. Aworo, O. J., "Transformer for contactless electric vehicle charging with bidirectional power flow," 2017 IEEE Power & Energy Society General Meeting, 1-5, 2017. Google Scholar
13. Bi, Z., "A review of wireless power transfer for electric vehicles: Prospects to enhance sustainable mobility," Applied Energy, Vol. 179, No. 1, 413-425, Oct. 2016. Google Scholar
14. Evzelman, M., "Burst mode control and switched-capacitor converters losses," 2016 IEEE Applied Power Electronics Conference and Exposition (APEC), 1603-1607, 2016.
doi:10.1109/APEC.2016.7468081 Google Scholar
15. Kim, J. W., "APWM adapted half-bridge LLC converter with voltage doubler rectifier for improving light load efficiency," Electronics Letters, Vol. 53, No. 5, 339-341, Mar. 2017.
doi:10.1049/el.2016.4203 Google Scholar
16. Liu, C., "Double-LCL resonant compensation network for electric vehicles wireless power transfer: Experimental study and analysis," IET Power Electron, Vol. 9, No. 11, 2262-2270, Sep. 2016.
doi:10.1049/iet-pel.2015.0186 Google Scholar
17. Li, W., "Inter-operability considerations of the double-sided LCC compensated wireless charger for electric vehicle and plug-in hybrid electric vehicle applications," 2015 IEEE PELS Workshop on Emerging Technologies: Wireless Power, 1-6, 2015. Google Scholar
18. Kan, T., "A new integration method for an electric vehicle wireless charging system using LCC compensation topology: Analysis and design," IEEE Transactions on Power Electronics, Vol. 32, No. 2, 1638-1650, Feb. 2017.
doi:10.1109/TPEL.2016.2552060 Google Scholar
19. Cai, H., "Output power adjustment in inductively coupled power transfer system," Transactions of China Electrotechnical Society, Vol. 29, No. 1, 215-220, Feb. 2014. Google Scholar
20. Huang, C. P. and D. B. Lin, "Signal integrity improvements of bended coupled lines by using miniaturized capacitance and inductance compensation structures," 2016 Asia-Pacific International Symposium on Electromagnetic Compatibility, 22-24, 2016.
doi:10.1109/APEMC.2016.7523019 Google Scholar
21. Gao, Y., "Safety and efficiency of the wireless charging of electric vehicles," Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, Vol. 230, No. 9, 1196-1207, Sep. 2016.
doi:10.1177/0954407015603863 Google Scholar
22. Guan, Y., "A high-frequency CLCL converter based on leakage inductance and variable width winding planar magnetics," IEEE Transactions on Industrial Electronics, Vol. 65, No. 1, 280-290, Jan. 2018.
doi:10.1109/TIE.2017.2716878 Google Scholar
23. Zhang, W. and S. C.Wong, "Analysis and comparison of secondary series-and parallel-compensated inductive power transfer systems operating for optimal efficiency and load-independent voltagetransfer ratio," IEEE Transactions on Power Electronics, Vol. 29, No. 6, 2979-2990, Jun. 2014.
doi:10.1109/TPEL.2013.2273364 Google Scholar