1. Caloz, C. and T. Itho, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications. (The Engineering Approach), Wiley & Sons, 2006.
2. Lai, A., K. M. K. H. Leong, and T. Itoh, "Infinite wavelength resonant antennas with monopolar radiation pattern based on periodic structures," IEEE Trans. Antennas Propag., Vol. 55, No. 3, 868-876, 2007.
doi:10.1109/TAP.2007.891845 Google Scholar
3. Park, J. H., Y. H. Ryu, J. G. Lee, and J. H. Lee, "Epsilon negative zeroth-order resonator antenna," IEEE Trans. Antennas Propag., Vol. 55, No. 12, 3710-3712, 2007.
doi:10.1109/TAP.2007.910505 Google Scholar
4. Park, J. H., Y. H. Ryu, and J. H. Lee, "Mu-zero resonance antenna," IEEE Trans. Antennas Propag., Vol. 58, No. 6, 1865-1875, 2010.
doi:10.1109/TAP.2010.2046832 Google Scholar
5. Lee, S. W. and J. H. Lee, "Electrically small MNG ZOR antenna with multilayered conductor," IEEE Antennas Wireless Propag. Lett., Vol. 9, 724-724, 2010.
doi:10.1109/LAWP.2010.2057403 Google Scholar
6. Yang, S. Y. and M. K. M. Ng, "A bisected miniaturized ZOR antenna with increased bandwidth and radiation efficiency," IEEE Antennas Wireless Propag. Lett., Vol. 12, 159-162, 2013.
doi:10.1109/LAWP.2013.2243696 Google Scholar
7. Sharma, S. K., A. Gupta, and R. K. Chaudhary, "Epsilon negative CPW-fed zeroth-order resonating antenna with backed ground plane for extended bandwidth and miniaturization," IEEE Trans. Antennas Propag., Vol. 63, No. 11, 5197-5203, 2015.
doi:10.1109/TAP.2015.2477521 Google Scholar
8. Niu, B. J. and Q. Y. Feng, "Bandwidth enhancement of CPW-fed antenna based on epsilon negative zeroth- and first-order resonators," IEEE Antennas Wireless Propag. Lett., Vol. 12, 1125-1128, 2013.
doi:10.1109/LAWP.2013.2280952 Google Scholar
9. Chi, P. L. and Y. S. Shih, "Compact and bandwidth-enhanced zeroth-order resonant antenna," IEEE Antennas Wireless Propag. Lett., Vol. 14, 285-288, 2015.
doi:10.1109/LAWP.2014.2363087 Google Scholar
10. Xiong, J., X. Q. Lin, Y. F. Yu, M. Tang, and S. Xiao, "Novel flexible dual-frequency broadside radiating rectangular patch antennas based on complementary planar ENZ or MNZ metamaterials," IEEE Trans. Antennas Propag., Vol. 60, No. 8, 3958-3961, 2012.
doi:10.1109/TAP.2012.2201115 Google Scholar
11. Yang, F., X. X. Zhang, X. N. Ye, and Y. Rahmat-Samii, "Wide-band E-shaped patch antennas for wireless communications," IEEE Trans. Antennas Propag., Vol. 49, No. 7, 1094-1100, 2001.
doi:10.1109/8.933489 Google Scholar
12. Wong, K. L. and W. H. Hsu, "A broad-band rectangular patch antenna with a pair of wide slits," IEEE Trans. Antennas Propag., Vol. 49, No. 9, 1345-1347, 2001.
doi:10.1109/8.951507 Google Scholar
13. Lee, K. J. and Y. S. Kim, "Broadband shorted-patch antenna with U-shaped coupling slot," Microw. Opt. Technol. Lett., Vol. 53, No. 11, 2566-2569, 2011.
doi:10.1002/mop.26339 Google Scholar
14. Peng, L., Y. J. Qiu, L. Y. Luo, and X. Jiang, "Bandwidth enhanced L-shaped patch antenna with parasitic element for 5.8-GHz wireless local area network applications," Wireless Personal Communications, Vol. 91, No. 3, 1163-1170, 2016.
doi:10.1007/s11277-016-3519-y Google Scholar
15. Nasimuddin and Z. N. Chen, "Wideband microstrip antennas with sandwich substrate," IET Microw. Antennas Propag., Vol. 2, No. 6, 538-546, 2008.
doi:10.1049/iet-map:20070284 Google Scholar
16. Peng, L., J. Y. Xie, X. Jiang, and S. M. Li, "Wideband microstrip antenna loaded by elliptical rings," Journal of Electromagnetic Waves and Applications, Vol. 30, No. 2, 154-166, 2016.
doi:10.1080/09205071.2015.1096837 Google Scholar
17. Malekpoor, H. and S. Jam, "Enhanced bandwidth of shorted patch antennas using folded-patch techniques," IEEE Antennas Wireless Propag. Lett., Vol. 12, 198-201, 2013.
doi:10.1109/LAWP.2013.2244555 Google Scholar
18. Guha, D., C. Sarkar, S. Dey, and C. Kumar, "Wideband high gain antenna realized from simple unloaded single patch," IEEE Trans. Antennas Propag., Vol. 63, No. 10, 4562-4566, 2015.
doi:10.1109/TAP.2015.2456942 Google Scholar
19. Peng, L., J. M. Mao, X. F. Li, X. Jiang, and C. L. Ruan, "Bandwidth enhancement of microstrip antenna loaded by parasitic zeroth-order resonators," Microw. Opt. Technol. Lett., Vol. 59, No. 5, 1096-1100, 2017.
doi:10.1002/mop.30471 Google Scholar
20. Sun, K., L. Peng, Q. Li, and X. Jiang, "T/L shaped zeroth-order resonators loaded microstrip antenna with enhanced bandwidth for wireless applications," Progress In Electromagnetics Research C, Vol. 80, 157-166, 2018.
doi:10.2528/PIERC17110303 Google Scholar
21. Peng, L., J. Y. Xie, X. Jiang, and C. L. Ruan, "Design and analysis of a new ZOR antenna with wide half power beam width (HPBW) characteristic," Frequenz, Vol. 71, No. 1-2, 41-50, 2017.
doi:10.1515/freq-2016-0142 Google Scholar
22. Szabo, Z., G. H. Park, R. Hedge, and E. P. Li, "A unique extraction of metamaterial parameters based on Kramers-Kronig relationship," IEEE Trans. Microw. Theory Techn., Vol. 58, No. 10, 2646-2653, 2010.
doi:10.1109/TMTT.2010.2065310 Google Scholar
23. Schneider, V. M. and H. T. Hattori, "High-tolerance power splitting in symmetric triple-mode evolution couplers," IEEE J. Quantum Electron., Vol. 36, No. 8, 923-930, 2000.
doi:10.1109/3.853545 Google Scholar