Vol. 80
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-04-03
A Slotted UWB Antipodal Vivaldi Antenna for Microwave Imaging Applications
By
Progress In Electromagnetics Research M, Vol. 80, 35-43, 2019
Abstract
This paper presents the design of an ultra-wideband (UWB) antipodal Vivaldi antenna (APVA) for radar and microwave imaging applications. A slotted APVA design is introduced to improve the low-end bandwidth limitation frequencies as well as to enhance the gain and directivity of the antenna. The optimizations of the design offer good results by using a cost-effective substrate, fiberglass reinforced grade 4 (FR4) material. The regular APVA antenna design only presents average results of gain (4-6 dBi) and directivity (4-7 dB). However, the addition of slots on the edges of antenna is able to increase the peak value of gain and directivity up to 73.65% with 7.64 dBi and 8.92 dB, respectively. Besides, the radiation pattern of the antenna is also improved by using the slotted design where the main lobe level is larger than regular APVA design. Both antennas presented in this paper are designed in compact size of 42.8 mm x 57.3 mm. The antennas are also designed to operate within the frequency range of 3.6 GHz to 10 GHz frequency.
Citation
Nurul Syuhada Binti Hasim Kismet Anak Hong Ping Mohammad Tariqul Islam Md. Zulfiker Mahmud Shafrida Sahrani Dayang Azra Awang Mat Dyg Norkhairunnisa Abg Zaidel , "A Slotted UWB Antipodal Vivaldi Antenna for Microwave Imaging Applications," Progress In Electromagnetics Research M, Vol. 80, 35-43, 2019.
doi:10.2528/PIERM18121201
http://www.jpier.org/PIERM/pier.php?paper=18121201
References

1. George, T., "Ultra-wideband and applications," SCMS School of Engineering and Technology, 2014, [online], available: https://www.slideshare.net/thomasgeorgec/uwb-and-applications, [accessed: 20-Jul.-2017].

2. Rahman, A., M. T. Islam, M. J. Singh, S. Kibria, and M. Akhtaruzzaman, "Electromagnetic performances analysis of an ultra-wideband and flexible material antenna in microwave breast imaging: To implement a wearable medical bra," Sci. Rep., Vol. 6, 1-11, Dec. 2016.
doi:10.1038/s41598-016-0001-8

3. Herzi, R., H. Zairi, and A. Gharsallah, "Antipodal Vivaldi antenna array with high gain and reduced mutual coupling for UWB applications," 2015 16th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA), 789-792, 2015.

4. Mobashsher, A. and A. Abbosh, "Utilizing symmetry of planar ultra-wideband antennas for size reduction and enhanced performance," IEEE Antennas Propag. Mag., 1-27, 2015.

5. Gibson, P. J., "The Vivaldi aerial," 9th European Microwave Conference, 1979, 101-105, 1979.
doi:10.1109/EUMA.1979.332681

6. De Lera Acedo, E., E. García, V. González-Posadas, J. L. Vázquez-Roy, R. Maaskant, and D. Segovia, "Study and design of a differentially-fed tapered slot antenna array," IEEE Trans. Antennas Propag., Vol. 58, No. 1, 68-78, 2010.
doi:10.1109/TAP.2009.2036193

7. Brenda, "Vivaldi antenna," Microwaves101.com, 2013, [online], available: https://www.microwaves101.com/encyclopedias/vivaldi-antenna, [accessed: 04-Oct.-2017].

8. Yim, T. L., S. K. A. Rahim, and R. Dewan, "Reconfigurable wideband and narrowband tapered slot Vivaldi antenna with ring slot pairs," Journal of Electromagnetic Waves and Applications, Vol. 27, No. 3, 276-287, 2013.
doi:10.1080/09205071.2013.744124

9. Li, Y., S. Lin, J. Chen, and J. Ou, "Design of a wideband dual-polarized linearly tapered slot antenna," 2011 International Conference on Electronics, Communications and Control, ICECC 2011 - Proceedings, 210-213, 2011.
doi:10.1109/ICECC.2011.6066632

10. Yao, Y., W. Chen, B. Huang, Z. Feng, and Z. Zhang, "Analysis and design of tapered slot antenna for ultra-wideband applications," Tsinghua Sci. Technol., Vol. 14, No. 1, 1-6, 2009.
doi:10.1016/S1007-0214(09)70001-X

11. Pandey, G. K., H. S. Singh, P. K. Bharti, A. Pandey, and M. K. Meshram, "High gain Vivaldi antenna for radar and microwave imaging applications," Int. J. Signal Process. Syst., Vol. 3, No. 1, 35-39, 2014.

12. Wolff, C., "Tapered slot antenna (Vivaldi antenna)," Christian Wolff, 2013, [online], available: http://www.radartutorial.eu/06.antennas/Tapered Slot Antenna.en.html#this, [accessed: 05-Oct.-2017].

13. Fei, P., Y. C. Jiao, W. Hu, and F. S. Zhang, "A miniaturized antipodal vivaldi antenna with improved radiation characteristics," IEEE Antennas Wirel. Propag. Lett., Vol. 10, 127-130, 2011.

14. Alzabidi, M. A., M. A. Aldhaeebi, and I. Elshafiey, "Development of UWB Vivaldi antenna for microwave imaging," 2013 Saudi International Electronics, Communications and Photonics Conference, SIECPC 2013, 2013.

15. Maalik, S., "Antenna design for UWB radar detection application," Antenna, 2010.

16. Kang, X. and Z. Li, "A modified UWB antipodal Vivaldi antenna with improved radiation characteristics," 2015 IEEE 6th International Symposium on Microwave, Antenna, Propagation, and EMC Technologies (MAPE), Vol. 2, No. 1, 120-122, 2015.
doi:10.1109/MAPE.2015.7510279

17. Fisher, J., "Design and performance analysis of a 1-40 GHz ultra-wideband antipodal Vivaldi antenna," Proc. Ger. Radar Symp. GRS, Vol. 6002, 2000.

18. Gazit, E, "Improved design of the Vivaldi antenna," IEE Proc. H, Microwaves, Antennas Propag., Vol. 135, No. 2, 89-92, 1988.
doi:10.1049/ip-h-2.1988.0020

19. Wang, S., X. D. Chen, and C. G. Parini, "Analysis of ultra wideband antipodal Vivaldi antenna design," Proc. of 2007 Loughbrgh. Antennas Propag. Conf., LAPC, 129-132, Apr. 2007.
doi:10.1109/LAPC.2007.367448

20. Balanis, C. E., Antenna Theory: Analysis and Design, 3rd Ed., 1136, Wiley Interscience, 2005.

21. Yu, Y. and C. Ji, "Research of fractal technology in the design of multi-frequency antenna," 2011 China-Japan Jt. Microw. Conf., 1-4, 2011.

22. Chen, W. L., G. M. Wang, and C. X. Zhang, "Bandwidth enhancement of a microstrip-line-fed printed wide-slot antenna with a fractal-shaped slot," IEEE Trans. Antennas Propag., Vol. 57, No. 7, 2176-2179, 2009.
doi:10.1109/TAP.2009.2021974

23. Bai, J., S. Shi, and D. W. Prather, "Modified compact antipodal Vivaldi antenna for 4-50-GHz UWB application," IEEE Trans. Microw. Theory Tech., Vol. 59, No. 4, Part 2, 1051–1057, 2011.