Vol. 80
Latest Volume
All Volumes
PIERM 137 [2026] PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-04-26
Analysis of Implantable Ultrasonic Coupling Wireless Power Transmission System
By
Progress In Electromagnetics Research M, Vol. 80, 203-214, 2019
Abstract
The research on implantable ultrasonic coupling wireless power transmission systems has not been systematically analyzed from the sound field theory, and the influencing factors of implanted ultrasonic coupling wireless power transmission systems based on the far-field model are proposed in this paper. Firstly, the far-field model is constructed. On this basis, the main factors affecting the ultrasonic energy transmission in the system are discussed. The COMSOL finite element simulation software was used to simulate the ultrasonic coupling wireless energy transmission system in human tissue environment, and the directivity of the energy transmission system was verified. The system experiment platform is built to analyze the energy transmission under different distances, different sound source frequencies and different sound source excitations, and compare with the numerical simulation data. Finally, the influence of different factors on the energy transmission system is verified. It provides an effective reference for further research on implantable ultrasonic coupling wireless power transmission systems.
Citation
Xiaoheng Yan, Zhengyin Zhu, Guo-Qiang Liu, and Xiaohe Zhao, "Analysis of Implantable Ultrasonic Coupling Wireless Power Transmission System," Progress In Electromagnetics Research M, Vol. 80, 203-214, 2019.
doi:10.2528/PIERM19011001
References

1. Xiong, H., S. Meng, L. Liu, et al. "Design of wireless power transfer for implantable medical devices inweak power receiving," Journal of Tianjin Polytechnic University, Vol. 36, No. 3, 60-64, 2017.        Google Scholar

2. Zhang, B., X. Shu, and R. Huang, "The development of inductive and resonant wireless power transfer technology," Transactions of China Electrotechnical Society, Vol. 32, No. 18, 3-17, 2017.        Google Scholar

3. Cheng, S., X. Chen, J. Wang, et al. "Key technologies and applications of wireless power transmission," Transactions of China Electrotechnical Society, Vol. 30, No. 19, 68-84, 2015.
doi:10.1149/2.0991506jes        Google Scholar

4. Li, Q., S. Chen, W. Wang, et al. "Parameter optimization of magnetic coupling energy transfer for active implantable systems," Journal of Tsinghua University (Natural Science Edition), Vol. 55, No. 3, 351-355, 2015.        Google Scholar

5. Yin, C. and B. Xu, "Wireless power transfer for implantable ventricular assistance: A review," Transactions of China Electrotechnical Society, Vol. 30, No. 19, 103-109, 2015.        Google Scholar

6. Roes, M. G. L., M. A. M. Hendrix, and J. L. Duarte, "Contactless energy transfer through air by means of ultrasound," IECON 2011 - 37th Annual Conference of the IEEE Industrial Electronics Society, 1238-1243, Melbourne, VIC, 2011.        Google Scholar

7. Zhang, J., X. Huang, Y. Zou, et al. "Feasibility of ultrasonic wireless power transmission," Advanced Technology of Electrical Engineering and Energy, Vol. 30, No. 2, 66-69+74, 2011.        Google Scholar

8. Dai, X., L. Li, Y. Li, et al. "Determining the maximum power transfer condition for ultrasonic power transfer system," 2016 IEEE 2nd Annual Southern Power Electronics Conference (SPEC), 1-6, Auckland, 2016.        Google Scholar

9. Lee, S. Q., W. Youm, and G. Hwang, "Biocompatible wireless power transferring based on ultrasonic resonance devices," ICA 2013 Montreal Montreal, 2-7, Canada, Jun. 2013.        Google Scholar

10. Ishiyama, T., Y. Kanai, J. Ohwaki, and M. Mino, "Impact of a wireless power transmission system using an ultrasonic air transducer for low-power mobile applications," IEEE Symposium on Ultrasonics, Vol. 2, 1368-1371, 2003.        Google Scholar

11. Awal, Md. R., M. Jusoh, T. Sabapathy, M. R. Amarudin, and R. A. Rahim, "State-of-the-art develop-ments of acoustic energy transfer," International Journal of Antennas and Propagation Volume 2016, Article ID 3072528, 14 pages, 2016.        Google Scholar

12. Kim, C., et al. "Design of miniaturized wireless power receivers for mm-sized implants," 2017 IEEE Custom Integrated Circuits Conference (CICC), 1-8, Austin, TX, 2017.        Google Scholar

13. Shahab, S., M. D. Gray, and Erturk, "Ultrasonic power transfer from a spherical acoustic wave source to a free-free piezoelectricreceiver: Modeling and experiment," Journal of Applied Physis, Vol. 117, No. 10, 2015.        Google Scholar

14. Hori, Y., Y. Shigeta, K. Fujimori, et al. "Design of anti-resonance transducer and its abilities for efficient ultrasonic wireless power transmission system," 2011 41st European Microwave Conference, 67-70, Manchester, 2011.        Google Scholar

15. Shmilovitz, D., S. Ozeri, C.-C. Wang, and B. Spivak, "Noninvasive control of the power transferred to an implanted device by an ultrasonic transcutaneous energy transfer link," IEEE Transactions on Biomedical Engineering, Vol. 61, No. 4, 995-1004, Apr. 2014.
doi:10.1109/TBME.2013.2280460        Google Scholar

16. Meng, M. and M. Kiani, "A hybrid inductive ultrasonic link for wireless power transmission to millimeter-sized biomedical implants," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 64, No. 10, 1137-1141, Oct. 2017.
doi:10.1109/TCSII.2016.2626151        Google Scholar

17. Chou, T.-C., R. Subramanian, J. Park, and P. P. Mercier, "A miniaturized ultrasonic power delivery system," 2014 IEEE Biomedical Circuits and Systems Conference (BioCAS) Proceedings, 440-443, Lausanne, 2014.        Google Scholar

18. Fai, L. H., D. Xin, and H. Aiguo, "Electrical modeling of a wireless ultrasonic power transfer system," Transactions of China Electrotechnical Society, Vol. 30, No. 19, 85-89, 2015.        Google Scholar

19. Leung, H. F. and A. P. Hu, "Modeling the contact interface of ultrasonic power transfer system based on mechanical and electrical equivalence," IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 6, No. 2, 800-811, Jun. 2018.
doi:10.1109/JESTPE.2017.2720852        Google Scholar

20. Ozeri, S. and D. Shmilovitz, "Ultrasonic transcutaneous energy transfer for powering implanted devices," Ultrasonics, Vol. 50, No. 6, 556-566, 2014.
doi:10.1016/j.ultras.2009.11.004        Google Scholar

21. Mehdizadeh, E. and G. Piazza, "Chip-scale near-field resonant power transfer via elastic waves," Journal of Microelectromechanical Systems, Vol. 26, No. 5, 1155-1164, Oct. 2017.
doi:10.1109/JMEMS.2017.2719944        Google Scholar

22. Guida, R., G. E. Santagati, and T. Melodia, "A 700 kHz ultrasonic link for wireless powering of implantable medical devices," 2016 IEEE Sensors, 1-3, Orlando, FL, 2016.        Google Scholar

23. Maleki, T., N. Cao, S. H. Song, et al. "An ultrasonically powered implantable micro-oxygen generator (IMOG)," IEEE Transactions on Biomedical Engineering, Vol. 58, No. 11, 3104-3111, Nov. 2011.
doi:10.1109/TBME.2011.2163634        Google Scholar

24. Du, G., Z. Zhu, and X. Gong, Acoustic Basis, 212-235, Nanjing University Press, Nanjing, 2012.

25. Xu, Q., L. Ge, C. Zong, et al. "Design of self-powered power supply of sensor for piezoelectric energy," Piezoelectrics & Acoustooptics, 1-4, 2019.        Google Scholar

26. Liu, G. Q., Magnetoacoustic Tomography Technology, 142-156, Science Press, 2014.

27. Chen, A., X. Chen, and C. Dong, "Application value of sound velocity matching technology in imaging normal human tissues and organs," Journal of Practical Medicine, Vol. 30, No. 19, 3139-3141, 2014.        Google Scholar