Vol. 94
Latest Volume
All Volumes
PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2019-07-09
Design of MIMO Beamforming Antenna Array for Mobile Handsets
By
Progress In Electromagnetics Research C, Vol. 94, 13-28, 2019
Abstract
A new design idea of MIMO beamforming antenna array for compact and thin handheld devices is investigated, where the beamforming function is used for transmitting and the MIMO function for receiving. The new design idea is illustrated by an antenna array consisting of eight printed planar inverted-F elements operating at GSM1900 (1880-1920 MHz) and LTE2300 (2300-2400 MHz). The 8-element antenna array is printed on an FR4 substrate of dimensions 136 mm × 68.8 mm × 1 mm. By using the radiation pattern diversity, good isolations, envelope correlation coefficients and mean effective gains are achieved for MIMO receiving. To realize the beamforming function when the antenna is used for transmitting, an optimal feeding mechanism is introduced by the method of maximum power transmission efficiency, which is then implemented by a continuously adjustable feeding circuit board. With the optimized feeding mechanism, the gain of the antenna array in the desired direction can be significantly enhanced. The effects of the human body on the performance of antenna array are also examined, and the results indicate that the proposed design still exhibits good MIMO and beamforming performances in a practical scenario.
Citation
Ting Li, and Wen Geyi, "Design of MIMO Beamforming Antenna Array for Mobile Handsets," Progress In Electromagnetics Research C, Vol. 94, 13-28, 2019.
doi:10.2528/PIERC19030807
References

1. Dahlman, E., S. Parkvall, and J. Skold, 4G: LTE/LTE-advanced for Mobile Broadband, Academic Press, 2013.

2. Shajaiah, H., A. Abdel-Hadi, and C. Clancy, "Spectrum sharing between public safety and commercial users in 4G-LTE," Int. Conf. Computing Networking Commun. (ICNC), 674-679, Honolulu, HI, USA, Feb. 2014.        Google Scholar

3. Rappaport, T. S., et al., "Millimeter wave mobile communications for 5G cellular: It will work!," IEEE Access, Vol. 1, 335-349, May 2013.
doi:10.1109/ACCESS.2013.2260813        Google Scholar

4. Dehos, C., et al., "Millimeter-wave access and backhauling: The solution to the exponential data tra±c increase in 5G mobile communications systems?," IEEE Commun. Mag., Vol. 52, No. 9, 88-95, 2014.
doi:10.1109/MCOM.2014.6894457        Google Scholar

5. Silvia, S., H. Tabassum, and E. Hossain, "Multi-tier Drone architecture for 5G/B5G cellular networks: Challenges, trends, and prospects," IEEE Commun. Mag., Vol. 56, No. 3, 96-103, Mar. 2018.
doi:10.1109/MCOM.2018.1700666        Google Scholar

6. Wi, H., B. Kim, W. Jung, and B. Lee, "Multiband handset antenna analysis including LTE band MIMO service," Progress In Electromagnetics Research, Vol. 138, 661-673, 2013.
doi:10.2528/PIER13022408        Google Scholar

7. Ilvonen, J., R. Valkonen, J. Holopainen, and V. Viikari, "Multiband frequency reconfigurable 4G handset antenna with MIMO capability," Progress In Electromagnetics Research, Vol. 148, 233-243, 2014.
doi:10.2528/PIER14062703        Google Scholar

8. Hong, W., K. H. Baek, and S. Ko, "Millimeter-wave 5G antennas for smartphones: Overview and experimental demonstration," IEEE Trans. Antennas Propag., Vol. 65, No. 12, 6250-6261, Aug. 2017.
doi:10.1109/TAP.2017.2740963        Google Scholar

9. Ban, Y. L., et al., "Small-size printed coupled-fed antenna for eight-band LTE/GSM/UMTS wireless wide area network operation in an internal mobile handset," IET Microw. Antennas Propag., Vol. 7, No. 6, 399-407, Jun. 2013.
doi:10.1049/iet-map.2012.0390        Google Scholar

10. Ahmed, F., Y. Feng, and R. Li, "Dual wide-band four-unit MIMO antenna system for 4G/LTE and WLAN mobile phone applications," 2013 Loughborough Antennas Propag. Conf. (LAPC), 202-207, Loughborough, UK, Nov. 2013.        Google Scholar

11. Khan, R., A. Abdullah Al-Hadi, and P. J. Soh, "Efifciency of millimeter wave mobile terminal antennas with the inlfuence of users," Progress In Electromagnetics Research, Vol. 161, 113-123, 2018.
doi:10.2528/PIER18012409        Google Scholar

12. Li, M. Y., et al., "Eight-port orthogonally dual-polarized antenna array for 5G smartphone applications," IEEE Trans. Antennas Propag., Vol. 64, No. 9, 3820-3830, Sep. 2016.
doi:10.1109/TAP.2016.2583501        Google Scholar

13. Chen, Z. L., W. Geyi, M. Zhang, et al. "A study of MIMO antenna system for high order MIMO device," Int. J. Antennas Propag., 2016.
doi:10.1109/TAP.2016.2583501        Google Scholar

14. Hussain, R., A. T. Alreshaid, S. K. Podilchak, and M. S. Sharawi, "Compact 4G MIMO antenna integrated with a 5G array for current and future mobile handsets," IET Microw. Antennas Propag., Vol. 11, No. 2, 27-1279, Jan. 2017.
doi:10.1049/iet-map.2016.0738        Google Scholar

15. Zhang, W. J., Z. B.Weng, and L.Wang, "Design of a dual-band MIMO antenna for 5G smartphone application," 2018 Int. Workshop Antenna Technol. (iWAT), Nanjing, China, Jun. 2018.        Google Scholar

16. Li, Y., Y. Luo, and G. L. Yang, "12-port 5G massive MIMO antenna array in sub-6 GHz mobile handset for LTE bands 42/43/46 applications," IEEE Access, Vol. 6, 344-354, Oct. 2018.        Google Scholar

17. Dinger, R. J., "A planar version of a 4.0 GHz reactively steered adaptive array," IEEE Trans. Antennas Propag., Vol. 34, No. 3, 427-431, Mar. 1986.
doi:10.1109/TAP.1986.1143826        Google Scholar

18. Tsoulos, G. V., "Smart antennas for mobile communication systems: Benefits and challenges," Electron. Commun. Engineering J., Vol. 11, No. 2, 84-94, 1999.
doi:10.1049/ecej:19990204        Google Scholar

19. Dietrich, C. B., et al., "Smart antennas in wireless communications: Base-station diversity and handset beamforming," IEEE Antennas Propag. Mag., Vol. 42, No. 5, 142-151, 2000.
doi:10.1109/74.883513        Google Scholar

20. Tong, H. P. and G. Wen, "Optimal design of smart antenna systemsfor handheld devices," IET Microw. Antennas Propag., Vol. 10, No. 6, 617-623, Jun. 2016.
doi:10.1049/iet-map.2015.0339        Google Scholar

21. Liang, G., W. Gong, H. Liu, and J. Yu, "Development of 61-channel digital beamforming (DBF) transmitter array for mobile satellite communication," Progress In Electromagnetics Research, Vol. 97, 177-195, 2009.
doi:10.2528/PIER09082303        Google Scholar

22. Wan, W., G. Wen, and S. Gao, "Optimum design of low-cost dual-mode beam-steerable arrays for customer-premises equipment applications," IEEE Access, Vol. 6, 16092-16098, Mar. 2018.
doi:10.1109/ACCESS.2018.2813299        Google Scholar

23. Yu, B., K. Yang, and G. L. Yang, "A novel 28 GHz beam steering array for 5G mobile device with metallic casing application," IEEE Trans. Antennas Propag., Vol. 66, No. 1, 462-466, Jan. 2018.
doi:10.1109/TAP.2017.2772084        Google Scholar

24. Yang, B. Q., R. Q. Zhang, W. Hong, et al. "Digital beamforming-based massive MIMO transceiver for 5G millimeter-wave communications," IEEE Trans. Microw. Theory Techn., Vol. 66, No. 7, 3403-3418, May 2018.
doi:10.1109/TMTT.2018.2829702        Google Scholar

25. Liu, X., et al., "Beam-oriented digital predistortion for 5G massive MIMO hybrid beamforming transmitters," IEEE Trans. Microw. Theory Techn., Vol. 66, No. 7, 3419-3432, May 2018.
doi:10.1109/TMTT.2018.2830772        Google Scholar

26. Jo, O., J. J. Kim, et al. "Exploitation of dual-polarization diversity for 5G millimeter-wave MIMO beamforming systems," IEEE Trans. Antennas Propag., Vol. 65, No. 12, 6646-6655, Dec. 2017.
doi:10.1109/TAP.2017.2761979        Google Scholar

27. Wen, G., Foundations of Applied Electrodynamics, 273-275, Wiley, 2010.

28. Wen, G., Foundations for Radio Frequency Engineering, 410-420, World Scientific, 2015.
doi:10.1142/9040

29. Stein, S., "On cross coupling in multi-beam antennas," IRE Trans. Antennas Propag., Vol. 10, No. 5, 548-557, 1962.
doi:10.1109/TAP.1962.1137917        Google Scholar

30. Blanch, S., J. Romeu, and I. Corbella, "Exact representation of antenna system diversity performance from input parameter description," Electron. Lett., Vol. 39, No. 9, 705-707, May 2003.
doi:10.1049/el:20030495        Google Scholar

31. Mikki, S. M. and Y. M. M. Antar, "On cross correlation in antenna arrays with applications to spatial diversity and MIMO systems," IEEE Trans. Antennas Propag., Vol. 63, No. 4, 1798-1810, Apr. 2015.
doi:10.1109/TAP.2015.2398113        Google Scholar

32. Sharawi, M. S., A. T. Hassan, and M. U. Khan, "Correlation co-efficient calculations for MIMO antenna systems: A comparative study," Int. J. Microw. Wireless Technol., 1-14, 2017.        Google Scholar

33. Taga, T., "Analysis for mean effective gain for mobile in land mobile radio environments," IEEE Trans. Vehicular Technol., Vol. 39, No. 2, 117-131, May 1990.
doi:10.1109/25.54228        Google Scholar

34. Karaboikis, M. P., et al., "Integrating compact printed antennas onto small diversity/MIMO terminals," IEEE Trans. Antennas Propag., Vol. 56, No. 7, 2067-2078, 2008.
doi:10.1109/TAP.2008.924677        Google Scholar

35. Ko, S. C. and R. D. Murch, "Compact integrated diversity antenna for wireless communications," IEEE Trans. Antennas Propag., Vol. 47, No. 6, 954-960, Jun. 2001.
doi:10.1109/8.931154        Google Scholar

36. Shan, L. and G. Wen, "Optimal design of focused antenna arrays," IEEE Trans. Antennas Propag., Vol. 62, No. 11, 5565-5571, Nov. 2014.
doi:10.1109/TAP.2014.2357421        Google Scholar

37. Cai, X., G. Wen, and H. C. Sun, "A printed dipole array with high gain and endfire radiation," IEEE Antennas Wireless Propag. Lett., Vol. 16, 1512-1515, 2017.
doi:10.1109/LAWP.2016.2647319        Google Scholar

38. Cai, X. and G. Wen, "An optimization method for the synthesis of flat-top radiation patterns in the near-field and far-field regions," IEEE Trans. Antennas Propag., No. 2, Feb. 2019.        Google Scholar

39. Gu, X. Z. and G. Wen, "Design of a near-field RFID antenna array in metal cabinet environment," IEEE Antennas Wireless Propag. Lett., Vol. 18, 79-83, 2019.
doi:10.1109/LAWP.2018.2880965        Google Scholar