Vol. 85
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-09-06
Surface Wave-Based Radio Communication through Conductive Enclosures
By
Progress In Electromagnetics Research M, Vol. 85, 21-28, 2019
Abstract
A surface wave antenna operating in the 2.4 GHz band and efficient for launching surface electromagnetic waves at metal/dielectric interfaces is presented. Theantennaoperation is based on the strong field enhancement at the antenna tip, which results in efficient excitation of surface waves propagating along nearby metal surfaces. Since surface electromagnetic waves may efficiently tunnel through deep subwavelength channels from inner to outer metal/dielectric interface of a metal enclosure,this antenna is useful for broadband radio communication through various conductive enclosures, such as typical commercial Faraday cages.
Citation
Igor I. Smolyaninov Quirino Balzano Dendy Young , "Surface Wave-Based Radio Communication through Conductive Enclosures," Progress In Electromagnetics Research M, Vol. 85, 21-28, 2019.
doi:10.2528/PIERM19071808
http://www.jpier.org/PIERM/pier.php?paper=19071808
References

1. Cheng, D. K., Fundamentals of Engineering Electromagnetics, Chapter 8, London, Pearson, 1992.

2. Bethe, H. A., "Theory of diffraction by small holes," Phys. Rev., Vol. 66, 163, 1944.
doi:10.1103/PhysRev.66.163

3. Zayats, A. V., I. I. Smolyaninov, and A. Maradudin, "Nano-optics of surface plasmon-polaritons," Physics Reports, Vol. 408, 131-314, 2005.
doi:10.1016/j.physrep.2004.11.001

4. Ebbesen, T. W., H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature, Vol. 391, 667-669, 1998.
doi:10.1038/35570

5. Elliott, J., I. I. Smolyaninov, N. I. Zheludev, and A. V. Zayats, "Polarization control of optical transmission of a periodic array of elliptical holes in a metal film," Optics Letters, Vol. 29, 1414-1416, 2004.
doi:10.1364/OL.29.001414

6. Smolyaninov, I. I., A. V. Zayats, A. Stanishevsky, and C. C. Davis, "Optical control of photon tunneling through an array of nanometer scale cylindrical channels," Phys. Rev. B, Vol. 66, 205414, 2002.
doi:10.1103/PhysRevB.66.205414

7. Lezec, H. J., A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science, Vol. 297, 820-822, 2002.
doi:10.1126/science.1071895

8. Smolyaninov, I. I., Q. Balzano, C. C. Davis, and D. Young, "Surface wave-based underwater radio communication," IEEE Antennas and Wireless Propagation Letters, Vol. 17, 2503-2507, 2018.
doi:10.1109/LAWP.2018.2880008

9. Drude, P., "Zur elektronentheorie der metalle," Annalen der Physik, Vol. 306, 566-613, 1900.
doi:10.1002/andp.19003060312

10. Balzano, Q., et al., "Field and temperature gradients from short conductors in a dissipative medium," International Journal of Antennas and Propagation, Vol. 2007, Article ID 57670, 2007.

11. Balzano, Q., et al., "The near field of helical antennas," IEEE Trans. on Vehicular Technology, Vol. 31, No. 4, 173-185, 1982.
doi:10.1109/T-VT.1982.23933

12. Smolyaninov, I. I., D. L. Mazzoni, and C. C. Davis, "Imaging of surface plasmon scattering by lithographically created individual surface defects," Phys. Rev. Letters, Vol. 77, 3877-3880, 1996.
doi:10.1103/PhysRevLett.77.3877

13. Sanne, A., R. Ghosh, A. Rai, M. N. Yogeesh, S. H. Shin, A. Sharma, K. Jarvis, L. Mathew, R. Rao, D. Akinwande, and S. Banerjee, "Radio frequency transistors and circuits based on CVD MoS2," Nano Lett., Vol. 15, 5039, 2015.
doi:10.1021/acs.nanolett.5b01080

14. Wang, H., X. Wang, F. Xia, L. Wang, H. Jiang, Q. Xia, M. L. Chin, M. Dubey, and S. Han, "Black phosphorus radio-frequency transistors," Nano Lett., Vol. 14, 6424, 2014.
doi:10.1021/nl5029717

15. Politano, A., G. Chiarello, R. Samnakay, G. Liu, B. Gürbulak, S. Duman, A. A. Balandin, and D. W. Boukhvalov, "The influence of chemical reactivity of surface defects on ambient-stable InSe-based nanodevices," Nanoscale, Vol. 8, 8474, 2016.
doi:10.1039/C6NR01262K

16. Politano, A., L. Viti, and M. S. Vitiello, "Optoelectronic devices, plasmonics and photonics with topological insulators," APL Materials, Vol. 5, 035504, 2017.
doi:10.1063/1.4977782

17. Politano, A., M. S. Vitiello, L. Viti, D. W. Boukhvalov, and G. Chiarello, "The role of surface chemical reactivity in the stability of electronic nanodevices based on two-dimensional materials `beyond graphene' and topological insulators," Flat Chem., Vol. 1, 60, 2017.

18. Viti, L., A. Politano, and M. S. Vitiello, "Black phosphorus nanodevices at terahertz frequencies: Photodetectors and future challenges," APL Materials, Vol. 5, 035602, 2017.
doi:10.1063/1.4979090

19. Giordano, M. C., S. Mastel, C. Liewald, L. L. Columbo, M. Brambilla, L. Viti, A. Politano, K. Zhang, L. Li, A. G. Davies, E. H. Linfield, R. Hillenbrand, F. Keilmann, G. Scamarcio, and M. S. Vitiello, "Phase-resolved terahertz self-detection near-field microscopy," Opt. Express, Vol. 26, 18423, 2018.
doi:10.1364/OE.26.018423

20. Mitrofanov, O., L. Viti, E. Dardanis, M. C. Giordano, D. Ercolani, A. Politano, L. Sorba, and M. S. Vitiello, "Near-field terahertz probes with room-temperature nanodetectors for subwavelength resolution imaging," Sci. Rep., Vol. 7, 44240, 2017.
doi:10.1038/srep44240