1. Rahman, M. H., C. O. Luna, M. Saad, and P. Archambault, "EMG based control of a robotic exoskeleton for shoulder and elbow motion assist," Jounal of Automation and Control Engineering, Vol. 3, No. 4, 270-276, 2015. Google Scholar
2. Kiguchi, K. and Y. Hayashi, "An EMG-based control for an upper-limb power-assist exoskeleton robot," IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), Vol. 42, No. 4, 1064-1071, Aug. 2012. Google Scholar
3. Andreasen, D. S., S. K. Alien, and D. A. Backus, "Exoskeleton with EMG based active assistance for rehabilitation," Proceedings of the 9th International Conference on Rehabilitation Robotics, 2005, ICORR 2005, 333-336, 2005. Google Scholar
4. Lenzi, T., S. M. M. De Rossi, N. Vitiello, and M. C. Carrozza, "Intention-based EMG control for powered exoskeletons," IEEE Transactions on Biomedical Engineering, Vol. 59, No. 8, 2180-2190, Aug. 2012. Google Scholar
5. Rahman, M. H., C. O. Luna, M. Saad, and P. Archambault, "Motion control of an exoskeleton robot using electromyogram signals," Proceedings of Advances in Robotics, Mechatronics and Circuits: 18th International Conference on Circuits (Part of CSCC'14), 2014 International Conference on Mechatronics and Robotics, Structural Analysis (MEROSTA 2014), ISBN: 978-1-61804-242-2, 2014. Google Scholar
6. Kiguchi, K., T. Tanaka, and T. Fukuda, "Neuro-fuzzy control of a robotic exoskeleton with EMG signals," IEEE Transactions on Fuzzy Systems, Vol. 12, No. 4, 481-490, Aug. 2004. Google Scholar
7. Tang, Z., K. Zhang, S. Sun, Z. Gao, L. Zhang, and Z. Yang, "An upper-limb power-assist exoskeleton using proportional myoelectric control," Sensors, Vol. 14, 6677-6694, 2014. Google Scholar
8. Irimia, D. C., M. S. Poboroniuc, F. Serea, A. Baciu, and R. Olaru, "Controlling a FESEXOSKELETON rehabilitation system by means of brain-computer interface," Proceedings of International Conference and Exposition on Electrical and Power Engineering (EPE), 352-355, Iasi, 2016. Google Scholar
9. Lalitharatne, T. D., K. Teramoto, Y. Hayashi, K. Tamura, and K. Kiguchi, "EEG-based evaluation for perception-assist in upper-limb power-assist exoskeletons," Proceedings of 2014 World Automation Congress (WAC), 307-312, Waikoloa, HI, 2014. Google Scholar
10. Kilicarslan, A., S. Prasad, R. G. Grossman, and J. L. Contreras-Vidal, "High accuracy decoding of user intentions using EEG to control a lower-body exoskeleton," Proceedings of the 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 5606-5609, Osaka, 2014. Google Scholar
11. Lee, K., D. Liu, L. Perroud, R. Chavarriaga, and J. del R. Millán, "A brain-controlled exoskeleton with cascaded event-related desynchronization classifiers," Robotics and Autonomous Systems, Vol. 90, 15-23, 2017. Google Scholar
12. Li, Z., W. He, C. Yang, S. Qiu, L. Zhang, and C. Y. Su, "Teleoperation control of an exoskeleton robot using brain machine interface and visual compressive sensing," Proceedings of 2016 12th World Congress on Intelligent Control and Automation (WCICA), 1550-1555, Guilin, 2016. Google Scholar
13. Vidaurre, C., C. Klauer, T. Schauer, A. R. Murguialday, and K.-R. Müller, "EEG-based BCI for the linear control of an upper-limb neuroprosthesis," Medical Engineering & Physics, Vol. 38, 1195-1204, 2016. Google Scholar
14. Schultz, A. E. and T. A. Kuiken, "Neural interfaces for control of upper limb prostheses: The state of the art and future possibilities," PM&R, Vol. 3, No. 1, 55-67, 2011. Google Scholar
15. Noda, T., N. Sugimoto, J. Furukawa, M. A. Sato, S. H. Hyon, and J. Morimoto, "Brain-controlled exoskeleton robot for BMI rehabilitation," Proceedings of the 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2012), 21-27, Osaka, 2012. Google Scholar
16. Ammar, L. I., B. Y. Kaddouh, M. K. Mohanna, and I. H. Elhajj, "SAS: SMA aiding sleeve," Proceedings of the 2010 IEEE International Conference on Robotics and Biomimetics, 1596-1599, Tianjin, 2010. Google Scholar
17. Ul Islam, M. R. and S. Bai, "Intention detection for dexterous human arm motion with FSR sensor bands," Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 139-140, Vienna, Austria, 2017. Google Scholar
18. Xiao, Z. G., A. M. Elnady, and C. Menon, "Control an exoskeleton for forearm rotation using FMG," Proceedings of the 5th IEEERAS/EMBS International Conference on Biomedical Robotics and Biomechatronics, 591-596, Sao Paulo, 2014. Google Scholar
19. Cho, E., R. Chen, L.-K. Merhi, Z. Xiao, B. Pousett, and C. Menon, "Force myography to control robotic upper extremity prostheses: A feasibility study," Frontiers in Bioengineering and Biotechnology, Vol. 4, 18, 2016. Google Scholar
20. Huang, J., W. Huo, W. Xu, S. Mohammed, and Y. Amirat, "Control of upper-limb power-assist exoskeleton using a human-robot interface based on motion intention recognition," IEEE Transactions on Automation Science and Engineering, Vol. 12, No. 4, 1257-1270, 2015. Google Scholar
21. Nguyen, V. T., T.-F. Lu, and P. Grimshaw, "Human intention recognition based on contactless sensors to control an elbow and forearm assistive exoskeleton," Proceedings of the 7th International Conference of Asian Society for Precision Engineering and Nanotechnology (ASPEN 2017), ARM-P-06, Seoul, Nov. 2017. Google Scholar
22. Fontana, M., F. Salsedo, and M. Bergamasco, "Novel magnetic sensing approach with improved linearity," Sensors, 2013. Google Scholar
23. Wang, S., J. Jin, T. Li, and G. Liu, "High-accuracy magnetic rotary encoder," System Simulation and Scientific Computing, 74-82, Springer Berlin Heidelberg, Berlin, 2012. Google Scholar
24. Lee, Y. Y., R. H. Wu, and S. T. Xu, "Applications of linear Hall-effect sensors on angular measurement," Proceedings of the 2011 IEEE International Conference on Control Applications (CCA), 479-482, Denver, CO, 2011. Google Scholar
25. Smirnov, Y., T. Kozina, E. Yurasova, and A. Sokolov, "Analog-to-digital converters of the components of a displacement with the use of microelectronic sine-cosine magnetic encoders," Measurement Techniques, Vol. 57, No. 1, 41-46, 2014. Google Scholar
26. Hu, J., J. Zou, F. Xu, Y. Li, and Y. Fu, "An improved PMSM rotor position sensor based on linear hall sensors," IEEE Transactions on Magnetics, Vol. 48, No. 11, 3591-3594, 2012. Google Scholar
27. Ramsden, E., Hall-effect Sensors. Theory and Applications, 2nd Ed., 272 pages, Newness, Elsevier, 2006.
28. Nguyen, V. T. and T.-F. Lu, "Modelling of magnetic field distributions of elliptical cylinder permanent magnets with diametrical magnetization," Journal of Magnetism and Magnetic Materials, Vol. 491, 2019. Google Scholar
29. Nguyen, V. T. and T.-F. Lu, "Analytical expression of the magnetic field created by a permanent magnet with diametrical magnetization," Progress In Electromagnetics Research C, Vol. 87, 163-174, 2018. Google Scholar
30. Nguyen, V. T., "Modelling of magnetic fields of permanent magnets with diametrical magnetization,", MPhil Thesis, 2019. Google Scholar
31. Jezný, J. and M. Čurilla, "Position measurement with Hall effect sensors," American Journal of Mechanical Engineering, Vol. 1, No. 7, 231-235, 2013. Google Scholar
32. Romilly, D. P., C. Anglin, R. G. Gosine, C. Hershler, and S. U. Raschke, "A functional task analysis and motion simulation for the development of a powered upper-limb orthosis," IEEE Transactions on Rehabilitation Engineering, Vol. 2, No. 3, 119-129, 1994. Google Scholar