1. Jin, J.-M. and D. J. Riley, Finite Element Analysis of Antennas and Arrays, Wiley Online Library, 2009.
2. Saitoh, K. and M. Koshiba, "Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: Application to photonic crystal fibers," IEEE Journal of Quantum Electronics, Vol. 38, No. 7, 927-933, 2002.
doi:10.1109/JQE.2002.1017609 Google Scholar
3. Fivaz, Fivaz, S. Brunner, G. de Ridder, O. Sauter, T. Tran, J. Vaclavik, L. Villard, and K. Appert, "Finite element approach to global gyrokinetic particle-in-cell simulations using magnetic coordinates," Computer Physics Communications, Vol. 111, No. 1, 27-47, 1998.
doi:10.1016/S0010-4655(98)00023-X Google Scholar
4. Lee, J.-F., D.-K. Sun, and Z. J. Cendes, "Full-wave analysis of dielectric waveguides using tangential vector finite elements," IEEE Transactions on Microwave Theory and Techniques, Vol. 39, No. 8, 1262-1271, 1991.
doi:10.1109/22.85399 Google Scholar
5. Rahman, B. A. and J. B. Davies, "Finite-element analysis of optical and microwave waveguide problems," IEEE Transactions on Microwave Theory and Techniques, Vol. 32, No. 1, 20-28, 1984.
doi:10.1109/TMTT.1984.1132606 Google Scholar
6. Yee, K. S. and J. S. Chen, "The finite-difference time-domain (FDTD) and the finite-volume time-domain (FVTD) methods in solving Maxwell’S equations," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 3, 354-363, 1997.
doi:10.1109/8.558651 Google Scholar
7. Cendes, Z. J., "Vector finite elements for electromagnetic field computation," IEEE Transactions on Magnetics, Vol. 27, No. 5, 3958-3966, 1991.
doi:10.1109/20.104970 Google Scholar
8. Lee, J.-F., R. Lee, and A. Cangellaris, "Time-domain finite-element methods," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 3, 430-442, 1997.
doi:10.1109/8.558658 Google Scholar
9. Monk, P., et al. Finite Element Methods for Maxwell’s Equations, Oxford University Press, 2003.
doi:10.1093/acprof:oso/9780198508885.001.0001
10. Jin, J.-M., The Finite Element Method in Electromagnetics, John Wiley & Sons, 2015.
11. Graglia, R. D., D. R. Wilton, and A. F. Peterson, "Higher order interpolatory vector bases for computational electromagnetics," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 3, 329-342, 1997.
doi:10.1109/8.558649 Google Scholar
12. Graglia, R. D. and A. F. Peterson, "Hierarchical divergence-conforming Nédélec elements for volumetric cells," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 11, 5215-5227, 2012. Google Scholar
13. Lee, S.-C., M. N. Vouvakis, and J.-F. Lee, "A non-overlapping domain decomposition method with nonmatching grids for modeling large finite antenna arrays," Journal of Computational Physics, Vol. 203, No. 1, 1-21, 2005. Google Scholar
14. Gedney, S. D. and U. Navsariwala, "An unconditionally stable finite element time-domain solution of the vector wave equation," IEEE Microwave and Guided Wave Letters, Vol. 5, No. 10, 332-334, 1995. Google Scholar
15. Rylander, T. and A. Bondeson, "Stability of explicit-implicit hybrid time-stepping schemes for Maxwell’s equations," Journal of Computational Physics, Vol. 179, No. 2, 426-438, 2002. Google Scholar
16. Bossavit, A., "Whitney forms: A class of finite elements for three-dimensional computations in electromagnetism," IEE Proceedings A --- Physical Science, Measurement and Instrumentation, Management and Education --- Reviews, Vol. 135, No. 8, 493-500, 1988. Google Scholar
17. Bossavit, A. and L. Kettunen, "Yee-like schemes on a tetrahedral mesh, with diagonal lumping," International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, Vol. 12, No. 1-2, 129-142, 1999. Google Scholar
18. Wong, M.-F., O. Picon, and V. F. Hanna, "A finite element method based on whitney forms to solve Maxwell equations in the time domain," IEEE Transactions on Magnetics, Vol. 31, No. 3, 1618-1621, 1995. Google Scholar
19. Rodrigue, G. and D. White, "A vector finite element time-domain method for solving Maxwell’s equations on unstructured hexahedral grids," SIAM Journal on Scientific Computing, Vol. 23, No. 3, 683-706, 2001. Google Scholar
20. Akbarzadeh-Sharbaf, A. and D. D. Giannacopoulos, "Finite-element time-domain solution of the vector wave equation in doubly dispersive media using Möbius transformation technique," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 8, 4158-4166, 2013. Google Scholar
21. Tarhasaari, T., L. Kettunen, and A. Bossavit, "Some realizations of a discrete Hodge operator: A reinterpretation of finite element techniques [for EM field analysis]," IEEE Transactions on Magnetics, Vol. 35, No. 3, 1494-1497, 1999. Google Scholar
22. Teixeira, F. L. and W. C. Chew, "Lattice electromagnetic theory from a topological viewpoint," Journal of Mathematical Physics, Vol. 40, No. 1, 169-187, 1999. Google Scholar
23. Gedney, S. D. and J. A. Roden, "Numerical stability of nonorthogonal FDTD methods," IEEE Transactions on Antennas and Propagation, Vol. 48, No. 2, 231-239, 2000. Google Scholar
24. Wang, S. and F. L. Teixeira, "Some remarks on the stability of time-domain electromagnetic simulations," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 3, 895-898, 2004. Google Scholar
25. Newmark, N. M., "Computation of dynamic structural response in the range approaching failure,", Department of Civil Engineering, University of Illinois, 1952. Google Scholar
26. Wood, W. L., Practical Time-stepping Schemes, Clarendon Press, Oxford University Press, Oxford, 1990.
27. Zienkiewicz, O. C., "A new look at the newmark, houbolt and other time stepping formulas. A weighted residual approach," Earthquake Engineering & Structural Dynamics, Vol. 5, No. 4, 413-418, 1977. Google Scholar
28. Zienkiewicz, O. C. and K. Morgan, Finite Elements and Approximation, Wiley, New York, 1983.
29. Benzi, M., G. H. Golub, and J. Liesen, "Numerical solution of saddle point problems," Acta Numerica, Vol. 14, 1-137, 2005. Google Scholar