Vol. 103
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2020-06-16
Unconditionally Stable Time Stepping Method for Mixed Finite Element Maxwell Solvers
By
Progress In Electromagnetics Research C, Vol. 103, 17-30, 2020
Abstract
Time domain finite element methods (TD-FEM) for computing electromagnetic fields are well studied. TD-FEM solution is typically effected using Newmark-Beta methods. One of the challenges of TD-FEM is the presence of a DC null-space that grows with time. This can be overcome by solving Maxwell equations directly. One approach, called time domain mixed finite element method (TD-MFEM), discretizes Maxwell's equations using appropriate spatial basis sets and leapfrog time stepping. Typically, the basis functions used to discretize field quantities have been low order. It is conditionally stable, and there is a strong link between time step size and mesh dependent eigenvalues, much like the Courant-Friedrichs-Lewy (CFL) condition. This implies that the time step sizes can be very small. To overcome this challenge, we use the Newmark-Beta approach. The principal contribution of this work is the development of, and rigorous proof of, unconditional stability for higher order TD-MFEM for different boundary conditions. Further, we analyze nullspaces of the resulting system, and demonstrate stability and convergence. All results are compared against the conditionally stable leapfrog approach.
Citation
Zane Crawford, Jie Li, Andrew Christlieb, and Balasubramaniam Shanker, "Unconditionally Stable Time Stepping Method for Mixed Finite Element Maxwell Solvers," Progress In Electromagnetics Research C, Vol. 103, 17-30, 2020.
doi:10.2528/PIERC20021001
References

1. Jin, J.-M. and D. J. Riley, Finite Element Analysis of Antennas and Arrays, Wiley Online Library, 2009.

2. Saitoh, K. and M. Koshiba, "Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: Application to photonic crystal fibers," IEEE Journal of Quantum Electronics, Vol. 38, No. 7, 927-933, 2002.
doi:10.1109/JQE.2002.1017609

3. Fivaz, Fivaz, S. Brunner, G. de Ridder, O. Sauter, T. Tran, J. Vaclavik, L. Villard, and K. Appert, "Finite element approach to global gyrokinetic particle-in-cell simulations using magnetic coordinates," Computer Physics Communications, Vol. 111, No. 1, 27-47, 1998.
doi:10.1016/S0010-4655(98)00023-X

4. Lee, J.-F., D.-K. Sun, and Z. J. Cendes, "Full-wave analysis of dielectric waveguides using tangential vector finite elements," IEEE Transactions on Microwave Theory and Techniques, Vol. 39, No. 8, 1262-1271, 1991.
doi:10.1109/22.85399

5. Rahman, B. A. and J. B. Davies, "Finite-element analysis of optical and microwave waveguide problems," IEEE Transactions on Microwave Theory and Techniques, Vol. 32, No. 1, 20-28, 1984.
doi:10.1109/TMTT.1984.1132606

6. Yee, K. S. and J. S. Chen, "The finite-difference time-domain (FDTD) and the finite-volume time-domain (FVTD) methods in solving Maxwell’S equations," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 3, 354-363, 1997.
doi:10.1109/8.558651

7. Cendes, Z. J., "Vector finite elements for electromagnetic field computation," IEEE Transactions on Magnetics, Vol. 27, No. 5, 3958-3966, 1991.
doi:10.1109/20.104970

8. Lee, J.-F., R. Lee, and A. Cangellaris, "Time-domain finite-element methods," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 3, 430-442, 1997.
doi:10.1109/8.558658

9. Monk, P., et al. Finite Element Methods for Maxwell’s Equations, Oxford University Press, 2003.
doi:10.1093/acprof:oso/9780198508885.001.0001

10. Jin, J.-M., The Finite Element Method in Electromagnetics, John Wiley & Sons, 2015.

11. Graglia, R. D., D. R. Wilton, and A. F. Peterson, "Higher order interpolatory vector bases for computational electromagnetics," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 3, 329-342, 1997.
doi:10.1109/8.558649

12. Graglia, R. D. and A. F. Peterson, "Hierarchical divergence-conforming Nédélec elements for volumetric cells," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 11, 5215-5227, 2012.

13. Lee, S.-C., M. N. Vouvakis, and J.-F. Lee, "A non-overlapping domain decomposition method with nonmatching grids for modeling large finite antenna arrays," Journal of Computational Physics, Vol. 203, No. 1, 1-21, 2005.

14. Gedney, S. D. and U. Navsariwala, "An unconditionally stable finite element time-domain solution of the vector wave equation," IEEE Microwave and Guided Wave Letters, Vol. 5, No. 10, 332-334, 1995.

15. Rylander, T. and A. Bondeson, "Stability of explicit-implicit hybrid time-stepping schemes for Maxwell’s equations," Journal of Computational Physics, Vol. 179, No. 2, 426-438, 2002.

16. Bossavit, A., "Whitney forms: A class of finite elements for three-dimensional computations in electromagnetism," IEE Proceedings A --- Physical Science, Measurement and Instrumentation, Management and Education --- Reviews, Vol. 135, No. 8, 493-500, 1988.

17. Bossavit, A. and L. Kettunen, "Yee-like schemes on a tetrahedral mesh, with diagonal lumping," International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, Vol. 12, No. 1-2, 129-142, 1999.

18. Wong, M.-F., O. Picon, and V. F. Hanna, "A finite element method based on whitney forms to solve Maxwell equations in the time domain," IEEE Transactions on Magnetics, Vol. 31, No. 3, 1618-1621, 1995.

19. Rodrigue, G. and D. White, "A vector finite element time-domain method for solving Maxwell’s equations on unstructured hexahedral grids," SIAM Journal on Scientific Computing, Vol. 23, No. 3, 683-706, 2001.

20. Akbarzadeh-Sharbaf, A. and D. D. Giannacopoulos, "Finite-element time-domain solution of the vector wave equation in doubly dispersive media using Möbius transformation technique," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 8, 4158-4166, 2013.

21. Tarhasaari, T., L. Kettunen, and A. Bossavit, "Some realizations of a discrete Hodge operator: A reinterpretation of finite element techniques [for EM field analysis]," IEEE Transactions on Magnetics, Vol. 35, No. 3, 1494-1497, 1999.

22. Teixeira, F. L. and W. C. Chew, "Lattice electromagnetic theory from a topological viewpoint," Journal of Mathematical Physics, Vol. 40, No. 1, 169-187, 1999.

23. Gedney, S. D. and J. A. Roden, "Numerical stability of nonorthogonal FDTD methods," IEEE Transactions on Antennas and Propagation, Vol. 48, No. 2, 231-239, 2000.

24. Wang, S. and F. L. Teixeira, "Some remarks on the stability of time-domain electromagnetic simulations," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 3, 895-898, 2004.

25. Newmark, N. M., "Computation of dynamic structural response in the range approaching failure,", Department of Civil Engineering, University of Illinois, 1952.

26. Wood, W. L., Practical Time-stepping Schemes, Clarendon Press, Oxford University Press, Oxford, 1990.

27. Zienkiewicz, O. C., "A new look at the newmark, houbolt and other time stepping formulas. A weighted residual approach," Earthquake Engineering & Structural Dynamics, Vol. 5, No. 4, 413-418, 1977.

28. Zienkiewicz, O. C. and K. Morgan, Finite Elements and Approximation, Wiley, New York, 1983.

29. Benzi, M., G. H. Golub, and J. Liesen, "Numerical solution of saddle point problems," Acta Numerica, Vol. 14, 1-137, 2005.