Vol. 105
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2020-08-22
Surface Crack Detection in Pipelines Using CSRR Microwave Based Sensor
By
Progress In Electromagnetics Research C, Vol. 105, 11-21, 2020
Abstract
This article presents a metamaterial-based microwave sensitive sensor with a complementary split-ring resonator (CSRR) structure for nondestructive surface crack detection in pipelines. The CSRR resonator is etched in the ground plane of a microstrip line and is produced using printed circuit board technology. The novelty of the proposed sensor is its structure that allows it to be directly used for nondestructive crack detection in pipelines, based on frequency and Q factor variations, even for cracks under a coating. A measurement setup was used to test the proposed sensor in pipelines of different materials: steel, PVC, and aluminum. The sensor could detect cracks of 1 mm. For a crack of 1 mm, the frequency shift was 6.10 MHz in steel, 2.62 MHz in polyvinyl chloride (PVC), and 1.70 MHz in aluminum. In some conditions, the Q-factor shift measurements were 6.72, 5.18, and 7.15 for steel, PVC, and aluminum, respectively. The proposed sensor features high sensitivity, small dimension, simple design, and easy fabrication.
Citation
Euclides Lourenço Chuma, Yuzo Iano, Sergio Barcelos, Luis Ernesto Ynoquio Herrera, Laez Barbosa da Fonseca Filho, and Rodolfo Cruz, "Surface Crack Detection in Pipelines Using CSRR Microwave Based Sensor," Progress In Electromagnetics Research C, Vol. 105, 11-21, 2020.
doi:10.2528/PIERC20050205
References

1. Mohitpour, M., Pipeline Design and Construction: A Practical Approach, ASME Press, 2003.

2. Boaz, L., S. Kaijage, and R. Sinde, "An overview of pipeline leak detection and location systems," Proceedings of the 2nd Pan African International Conference on Science, Computing and Telecommunications (PACT 2014), 2014.

3. Jia, Z., Z. Wang, W. Sun, and Z. Li, "Pipeline leakage localization based on distributed FBG hoop strain measurements and support vector machine," Optik, Vol. 176, 1-13, 2019.
doi:10.1016/j.ijleo.2018.09.048

4. Brun, K. and R. Kurz, Compression Machinery for Oil and Gas, 1st Edition, Gulf Professional Publishing, 2018.

5. Adegboye, M. A., W.-K. Fung, and A. Karnik, "Recent advances in pipeline monitoring and oil leakage detection technologies: Principles and approaches," Sensors, Vol. 19, 2548, 2019.
doi:10.3390/s19112548

6. Baroudi, U., A. A. Al-Roubaiey, and A. Devendiran, "Pipeline leak detection systems and data fusion: A survey," IEEE Access, Vol. 7, 97426-97439, 2019.
doi:10.1109/ACCESS.2019.2928487

7. Zuo, J., et al. "Pipeline leak detection technology based on distributed optical fiber acoustic sensing system," IEEE Access, Vol. 8, 30789-30796, 2020.
doi:10.1109/ACCESS.2020.2973229

8. Ekes, C. and B. Neducza, "Pipe condition assessments using pipe penetrating radar," 14th International Conference on Ground Penetrating Radar (GPR), 2012.

9. Awwad, A., et al. "Communication network for ultrasonic acoustic water leakage detectors," IEEE Access, Vol. 8, 29954-29964, 2020.
doi:10.1109/ACCESS.2020.2972648

10. Wang, J., et al. "Novel negative pressure wave-based pipeline leak detection system using fiber bragg grating-based pressure sensors," Journal of Lightwave Technology, Vol. 35, No. 16, 3366-3373, 2017.
doi:10.1109/JLT.2016.2615468

11. Akib, A. B. M., N. B. Saad, and V. Asirvadam, "Pressure point analysis for early detection system," IEEE 7th International Colloquium on Signal Processing and Its Applications, 2011.

12. Stouffs, P. and M. Giot, "Pipeline leak detection based on mass balance: Importance of the packing term," Journal of Loss Prevention in the Process Industries, Vol. 6, No. 5, 307-312, 1993.
doi:10.1016/S0950-4230(05)80004-X

13. Zarifi, M. H., et al. "Microwave ring resonator-based non-contact interface sensor for oil sands applications," Sensors and Actuators B, Vol. 224, 632-639, 2016.
doi:10.1016/j.snb.2015.10.061

14. Karaaslan, M. and M. Bakir, "Chiral metamaterial based multifunctional sensor applications," Progress In Electromagnetics Research, Vol. 149, 55-67, 2014.
doi:10.2528/PIER14070111

15. Boyarskii, D. A., V. V. Tikhonov, and N. Yu. Komarova, "Model of dielectric constant of bound water in soil for applications of microwave remote sensing," Progress In Electromagnetics Research, Vol. 35, 251-269, 2002.
doi:10.2528/PIER01042403

16. Kilpijarvi, J., N. Halonen, Ja. Juuti, and J. Hannu, "Microfluidic microwave sensor for detecting saline in biological range," Sensors, Vol. 19, 819, 2019.
doi:10.3390/s19040819

17. Mirza, A. F., C. H. See, I. M. Danjuma, et al. "An active microwave sensor for near field imaging," IEEE Sensors Journal, Vol. 17, No. 9, 2749-2757, 2017.
doi:10.1109/JSEN.2017.2673961

18. Baghbani, R., M. A. Rad, and A. Pourziad, "Microwave sensor for non-invasive glucose measurements design and implementation of a novel linear," IET Wireless Sensor System, Vol. 5, No. 2, 51-57, 2015.
doi:10.1049/iet-wss.2013.0099

19. Chen, T., S. Li, and H. Sun, "Metamaterials application in sensing," Sensors, Vol. 12, No. 3, 2742-2765, 2012.
doi:10.3390/s120302742

20. Huang, M. and J. Yang, "Microwave sensor using metamaterials," Wave Propagation, 13-36, In Tech, 2011.

21. Ziolkowski, R. W. and N. Engheta, "Introduction, history, and selected topics in fundamental theories of metamaterials," Metamaterials Physics and Engineering Explorations, IEEE Press, John Wiley & Sons, 2006.

22. Holloway, C. L., E. F. Kuester, J. A. Gordon, et al. "An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials," IEEE Antennas and Propagation Magazine, Vol. 54, No. 2, 10-35, 2012.
doi:10.1109/MAP.2012.6230714

23. Chowdhury, D. R., A. K. Azad, W. Zhang, and R. Singh, "Near field coupling in passive and active terahertz metamaterial devices," IEEE Transactions on Terahertz Science and Technology, Vol. 3, No. 6, 783-790, 2013.
doi:10.1109/TTHZ.2013.2285569

24. Luk'yanchuk, B., N. I. Zheludev, S. A. Maier, et al. "The Fano resonance in plasmonic nanostructures and metamaterials," Nature Materials, Vol. 9, 707-715, 2010.
doi:10.1038/nmat2810

25. Albishi, A. and O. M. Ramahi, "Detection of surface and subsurface cracks in metallic and non- metallic materials using a complementary split-ring resonator," Sensors, Vol. 14, No. 10, 19354-19370, 2014.
doi:10.3390/s141019354

26. Yun, T. and S. Lim, "High-Q and miniaturized complementary split ring resonator-loaded substrate integrated waveguide microwave sensor for crack detection in metallic materials," Sensors and Actuators A: Physical, Vol. 214, 25-30, 2014.
doi:10.1016/j.sna.2014.04.006

27. Albishi, A. and O. M. Ramahi, "Microwaves-based high sensitivity sensors for crack detection in metallic materials," IEEE Transactions on Microwave Theory and Techniques, Vol. 65, No. 5, 1864-1872, 2017.
doi:10.1109/TMTT.2017.2673823

28. Rajni, A. K. and A. Marwaha, "Complementary split ring resonator based sensor for crack detection," International Journal of Electrical and Computer Engineering, Vol. 5, No. 5, 1012-1017, 2015.

29. Albishi, A. M., M. S. Boybay, and O. M. Ramahi, "Complementary split-ring resonator for crack detection in metallic surfaces," IEEE Microwave and Wireless Components Letters, Vol. 22, No. 6, 330-332, 2012.
doi:10.1109/LMWC.2012.2197384

30. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2075-2084, 1999.
doi:10.1109/22.798002

31. Falcone, F., T. Lopetegi, J. D. Baena, et al. "Effective negative-stopband microstrip lines based on complementary split ring resonators," IEEE Microwave and Wireless Components Letters, Vol. 14, No. 6, 280-282, 2004.
doi:10.1109/LMWC.2004.828029

32. Falcone, F., T. Lopetegi, M. A. G. Laso, et al. "Babinet principle applied to the design of metasurfaces and metamaterials," Physical Review Letters, Vol. 93, 197401, 2004.
doi:10.1103/PhysRevLett.93.197401

33. Katsarakis, N., T. Koschny, M. Kafesaki, et al. "Electric coupling to the magnetic resonance of split ring resonators," Applied Physics Letters, Vol. 84, No. 15, 2943-2945, 2004.
doi:10.1063/1.1695439

34. Bilotti, F., A. Toscano, and L. Vegni, "Design of spiral and multiple split-ring resonators for the realization of miniaturized metamaterial samples," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 8, 2258-2267, 2007.
doi:10.1109/TAP.2007.901950

35. Naqui, J., "Fundamentals of planar metamaterials and subwavelength resonators," Symmetry Properties in Transmission Lines Loaded with Electrically Small Resonators, Springer Theses book series, 2016.

36. Ansari, M. A. H., A. K. Jha, and M. J. Akhtar, "Design and application of the CSRR-based planar sensor for noninvasive measurement of complex permittivity," IEEE Sensors Journal, Vol. 15, No. 12, 7181-7189, 2015.
doi:10.1109/JSEN.2015.2469683

37. Bonache, J., M. Gil, I. Gil, et al. "On the electrical characteristics of complementary metamaterial resonators," IEEE Microwave and Wireless Components Letters, Vol. 16, No. 10, 543-545, 2006.
doi:10.1109/LMWC.2006.882400

38. Chuma, E. L., et al. "Microwave sensor for liquid dielectric characterization based on metamaterial complementary split ring resonator," IEEE Sensors Journal, Vol. 18, No. 24, 9978-9983, 2018.
doi:10.1109/JSEN.2018.2872859

39. Salim, A. and S. Lim, "Complementary split-ring resonator-loaded microfluidic ethanol chemical sensor," Sensors, Vol. 16, 1802, 2016.
doi:10.3390/s16111802

40. Chakyar, S. P., S. K. Simon, C. Bindu, J. Andrews, and V. P. Joseph, "Complex permittivity measurement using metamaterial split ring resonators," Journal of Applied Physics, Vol. 121, 054101-1, 2017.