1. Mohitpour, M., Pipeline Design and Construction: A Practical Approach, ASME Press, 2003.
2. Boaz, L., S. Kaijage, and R. Sinde, "An overview of pipeline leak detection and location systems," Proceedings of the 2nd Pan African International Conference on Science, Computing and Telecommunications (PACT 2014), 2014. Google Scholar
3. Jia, Z., Z. Wang, W. Sun, and Z. Li, "Pipeline leakage localization based on distributed FBG hoop strain measurements and support vector machine," Optik, Vol. 176, 1-13, 2019.
doi:10.1016/j.ijleo.2018.09.048 Google Scholar
4. Brun, K. and R. Kurz, Compression Machinery for Oil and Gas, 1st Edition, Gulf Professional Publishing, 2018.
5. Adegboye, M. A., W.-K. Fung, and A. Karnik, "Recent advances in pipeline monitoring and oil leakage detection technologies: Principles and approaches," Sensors, Vol. 19, 2548, 2019.
doi:10.3390/s19112548 Google Scholar
6. Baroudi, U., A. A. Al-Roubaiey, and A. Devendiran, "Pipeline leak detection systems and data fusion: A survey," IEEE Access, Vol. 7, 97426-97439, 2019.
doi:10.1109/ACCESS.2019.2928487 Google Scholar
7. Zuo, J., et al. "Pipeline leak detection technology based on distributed optical fiber acoustic sensing system," IEEE Access, Vol. 8, 30789-30796, 2020.
doi:10.1109/ACCESS.2020.2973229 Google Scholar
8. Ekes, C. and B. Neducza, "Pipe condition assessments using pipe penetrating radar," 14th International Conference on Ground Penetrating Radar (GPR), 2012. Google Scholar
9. Awwad, A., et al. "Communication network for ultrasonic acoustic water leakage detectors," IEEE Access, Vol. 8, 29954-29964, 2020.
doi:10.1109/ACCESS.2020.2972648 Google Scholar
10. Wang, J., et al. "Novel negative pressure wave-based pipeline leak detection system using fiber bragg grating-based pressure sensors," Journal of Lightwave Technology, Vol. 35, No. 16, 3366-3373, 2017.
doi:10.1109/JLT.2016.2615468 Google Scholar
11. Akib, A. B. M., N. B. Saad, and V. Asirvadam, "Pressure point analysis for early detection system," IEEE 7th International Colloquium on Signal Processing and Its Applications, 2011. Google Scholar
12. Stouffs, P. and M. Giot, "Pipeline leak detection based on mass balance: Importance of the packing term," Journal of Loss Prevention in the Process Industries, Vol. 6, No. 5, 307-312, 1993.
doi:10.1016/S0950-4230(05)80004-X Google Scholar
13. Zarifi, M. H., et al. "Microwave ring resonator-based non-contact interface sensor for oil sands applications," Sensors and Actuators B, Vol. 224, 632-639, 2016.
doi:10.1016/j.snb.2015.10.061 Google Scholar
14. Karaaslan, M. and M. Bakir, "Chiral metamaterial based multifunctional sensor applications," Progress In Electromagnetics Research, Vol. 149, 55-67, 2014.
doi:10.2528/PIER14070111 Google Scholar
15. Boyarskii, D. A., V. V. Tikhonov, and N. Yu. Komarova, "Model of dielectric constant of bound water in soil for applications of microwave remote sensing," Progress In Electromagnetics Research, Vol. 35, 251-269, 2002.
doi:10.2528/PIER01042403 Google Scholar
16. Kilpijarvi, J., N. Halonen, Ja. Juuti, and J. Hannu, "Microfluidic microwave sensor for detecting saline in biological range," Sensors, Vol. 19, 819, 2019.
doi:10.3390/s19040819 Google Scholar
17. Mirza, A. F., C. H. See, I. M. Danjuma, et al. "An active microwave sensor for near field imaging," IEEE Sensors Journal, Vol. 17, No. 9, 2749-2757, 2017.
doi:10.1109/JSEN.2017.2673961 Google Scholar
18. Baghbani, R., M. A. Rad, and A. Pourziad, "Microwave sensor for non-invasive glucose measurements design and implementation of a novel linear," IET Wireless Sensor System, Vol. 5, No. 2, 51-57, 2015.
doi:10.1049/iet-wss.2013.0099 Google Scholar
19. Chen, T., S. Li, and H. Sun, "Metamaterials application in sensing," Sensors, Vol. 12, No. 3, 2742-2765, 2012.
doi:10.3390/s120302742 Google Scholar
20. Huang, M. and J. Yang, "Microwave sensor using metamaterials," Wave Propagation, 13-36, In Tech, 2011. Google Scholar
21. Ziolkowski, R. W. and N. Engheta, "Introduction, history, and selected topics in fundamental theories of metamaterials," Metamaterials Physics and Engineering Explorations, IEEE Press, John Wiley & Sons, 2006. Google Scholar
22. Holloway, C. L., E. F. Kuester, J. A. Gordon, et al. "An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials," IEEE Antennas and Propagation Magazine, Vol. 54, No. 2, 10-35, 2012.
doi:10.1109/MAP.2012.6230714 Google Scholar
23. Chowdhury, D. R., A. K. Azad, W. Zhang, and R. Singh, "Near field coupling in passive and active terahertz metamaterial devices," IEEE Transactions on Terahertz Science and Technology, Vol. 3, No. 6, 783-790, 2013.
doi:10.1109/TTHZ.2013.2285569 Google Scholar
24. Luk'yanchuk, B., N. I. Zheludev, S. A. Maier, et al. "The Fano resonance in plasmonic nanostructures and metamaterials," Nature Materials, Vol. 9, 707-715, 2010.
doi:10.1038/nmat2810 Google Scholar
25. Albishi, A. and O. M. Ramahi, "Detection of surface and subsurface cracks in metallic and non- metallic materials using a complementary split-ring resonator," Sensors, Vol. 14, No. 10, 19354-19370, 2014.
doi:10.3390/s141019354 Google Scholar
26. Yun, T. and S. Lim, "High-Q and miniaturized complementary split ring resonator-loaded substrate integrated waveguide microwave sensor for crack detection in metallic materials," Sensors and Actuators A: Physical, Vol. 214, 25-30, 2014.
doi:10.1016/j.sna.2014.04.006 Google Scholar
27. Albishi, A. and O. M. Ramahi, "Microwaves-based high sensitivity sensors for crack detection in metallic materials," IEEE Transactions on Microwave Theory and Techniques, Vol. 65, No. 5, 1864-1872, 2017.
doi:10.1109/TMTT.2017.2673823 Google Scholar
28. Rajni, A. K. and A. Marwaha, "Complementary split ring resonator based sensor for crack detection," International Journal of Electrical and Computer Engineering, Vol. 5, No. 5, 1012-1017, 2015. Google Scholar
29. Albishi, A. M., M. S. Boybay, and O. M. Ramahi, "Complementary split-ring resonator for crack detection in metallic surfaces," IEEE Microwave and Wireless Components Letters, Vol. 22, No. 6, 330-332, 2012.
doi:10.1109/LMWC.2012.2197384 Google Scholar
30. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2075-2084, 1999.
doi:10.1109/22.798002 Google Scholar
31. Falcone, F., T. Lopetegi, J. D. Baena, et al. "Effective negative-stopband microstrip lines based on complementary split ring resonators," IEEE Microwave and Wireless Components Letters, Vol. 14, No. 6, 280-282, 2004.
doi:10.1109/LMWC.2004.828029 Google Scholar
32. Falcone, F., T. Lopetegi, M. A. G. Laso, et al. "Babinet principle applied to the design of metasurfaces and metamaterials," Physical Review Letters, Vol. 93, 197401, 2004.
doi:10.1103/PhysRevLett.93.197401 Google Scholar
33. Katsarakis, N., T. Koschny, M. Kafesaki, et al. "Electric coupling to the magnetic resonance of split ring resonators," Applied Physics Letters, Vol. 84, No. 15, 2943-2945, 2004.
doi:10.1063/1.1695439 Google Scholar
34. Bilotti, F., A. Toscano, and L. Vegni, "Design of spiral and multiple split-ring resonators for the realization of miniaturized metamaterial samples," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 8, 2258-2267, 2007.
doi:10.1109/TAP.2007.901950 Google Scholar
35. Naqui, J., "Fundamentals of planar metamaterials and subwavelength resonators," Symmetry Properties in Transmission Lines Loaded with Electrically Small Resonators, Springer Theses book series, 2016. Google Scholar
36. Ansari, M. A. H., A. K. Jha, and M. J. Akhtar, "Design and application of the CSRR-based planar sensor for noninvasive measurement of complex permittivity," IEEE Sensors Journal, Vol. 15, No. 12, 7181-7189, 2015.
doi:10.1109/JSEN.2015.2469683 Google Scholar
37. Bonache, J., M. Gil, I. Gil, et al. "On the electrical characteristics of complementary metamaterial resonators," IEEE Microwave and Wireless Components Letters, Vol. 16, No. 10, 543-545, 2006.
doi:10.1109/LMWC.2006.882400 Google Scholar
38. Chuma, E. L., et al. "Microwave sensor for liquid dielectric characterization based on metamaterial complementary split ring resonator," IEEE Sensors Journal, Vol. 18, No. 24, 9978-9983, 2018.
doi:10.1109/JSEN.2018.2872859 Google Scholar
39. Salim, A. and S. Lim, "Complementary split-ring resonator-loaded microfluidic ethanol chemical sensor," Sensors, Vol. 16, 1802, 2016.
doi:10.3390/s16111802 Google Scholar
40. Chakyar, S. P., S. K. Simon, C. Bindu, J. Andrews, and V. P. Joseph, "Complex permittivity measurement using metamaterial split ring resonators," Journal of Applied Physics, Vol. 121, 054101-1, 2017. Google Scholar