1. Jiang, S. and S. V. Georgakopoulos, "Optimum wireless powering of sensors embedded in concrete," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 2, 1106-1113, 2011.
doi:10.1109/TAP.2011.2173147 Google Scholar
2. Shams, K. M. and M. Ali, "Wireless power transmission to a buried sensor in concrete," IEEE Sensors Journal, Vol. 7, No. 12, 1573-1577, 2007.
doi:10.1109/JSEN.2007.908230 Google Scholar
3. Assimonis, S. D., V. Fusco, A. Georgiadis, and T. Samaras, "Efficient and sensitive electrically small rectenna for ultra-low power RF energy harvesting," Scientific Reports, Vol. 8, No. 1, 1-13, 2018.
doi:10.1038/s41598-018-33388-w Google Scholar
4. Shen, S., C.-Y. Chiu, and R. D. Murch, "Multiport pixel rectenna for ambient RF energy harvesting," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 2, 644-656, 2017.
doi:10.1109/TAP.2017.2786320 Google Scholar
5. Andersson, M. A., A. Ozcelikkale, M. Johansson, U. Engstrom, A. Vorobiev, and J. Stake, "Feasibility of ambient RF energy harvesting for self-sustainable M2M communications using transparent and flexible graphene antennas," IEEE Access, Vol. 4, 5850-5857, 2016.
doi:10.1109/ACCESS.2016.2604078 Google Scholar
6. Pinuela, M., P. D. Mitcheson, and S. Lucyszyn, "Ambient RF energy harvesting in urban and semi-urban environments," IEEE Transactions on Microwave Theory and Techniques, Vol. 61, No. 7, 2715-2726, 2013.
doi:10.1109/TMTT.2013.2262687 Google Scholar
7. Apostolos, J. T., J. D. Logan, and W. Mouyos, Low frequency rectenna system for wireless charging, US Patent App. 16/569,814, January 2, 2020.
8. Takeno, K., "Wireless power transmission technology for mobile devices," IEICE Electronics Express, Vol. 10, No. 21, 20132010-20132010, 2013.
doi:10.1587/elex.10.20132010 Google Scholar
9. Shinohara, N., "Rectennas for microwave power transmission," IEICE Electronics Express, Vol. 10, No. 21, 20132009-20132009, 2013.
doi:10.1587/elex.10.20132009 Google Scholar
10. Ashoor, A. Z., T. S. Almoneef, and O. M. Ramahi, "A planar dipole array surface for electromagnetic energy harvesting and wireless power transfer," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, No. 3, 1553-1560, 2017.
doi:10.1109/TMTT.2017.2750163 Google Scholar
11. Suh, Y.-H. and K. Chang, "A high-efficiency dual-frequency rectenna for 2.45- and 5.8-GHz wireless power transmission," IEEE Transactions on Microwave Theory and Techniques, Vol. 50, No. 7, 1784-1789, 2002.
doi:10.1109/TMTT.2002.800430 Google Scholar
12. Glaser, P. E., "Power from the sun: Its future," Science, Vol. 162, No. 3856, 857-861, 1968.
doi:10.1126/science.162.3856.857 Google Scholar
13. Erb, R., "Power from space — The tough questions: The 1995 Peter E. Glaser lecture," Acta Astronautica, Vol. 38, No. 4–8, 539-550, 1996.
doi:10.1016/0094-5765(96)82324-1 Google Scholar
14. Shafique, K., B. A. Khawaja, M. D. Khurram, S. M. Sibtain, Y. Siddiqui, M. Mustaqim, H. T. Chattha, and X. Yang, "Energy harvesting using a low-cost rectenna for Internet of Things (IoT) applications," IEEE Access, Vol. 6, 30932-30941, 2018.
doi:10.1109/ACCESS.2018.2834392 Google Scholar
15. Lin, W. and R. W. Ziolkowski, "A circularly polarized wireless power transfer system for internetof- things (IoT) applications," 2020 4th Australian Microwave Symposium (AMS) IEEE, 1-2, 2020. Google Scholar
16. Singh, N., S. Kumar, and B. K. Kanaujia, "A new trend to power up next-generation Internet of Things (IoT) devices: ‘rectenna’," Energy Conservation for IoT Devices, 331-356, Springer, 2019.
doi:10.1007/978-981-13-7399-2_14 Google Scholar
17. Eid, A., J. G. Hester, J. Costantine, Y. Tawk, A. H. Ramadan, and M. M. Tentzeris, "A compact source-load agnostic flexible rectenna topology for IoT devices," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 4, 2621-2629, 2019.
doi:10.1109/TAP.2019.2955211 Google Scholar
18. Michisaka, T., et al., "Novel sensing techniques of chipless RFID sensor for infrastructure," IEICE Communications Express, 2020. Google Scholar
19. Yang, S., M. Crisp, R. V. Penty, and I. H. White, "RFID enabled health monitoring system for aircraft landing gear," IEEE Journal of Radio Frequency Identification, Vol. 2, No. 3, 159-169, 2018.
doi:10.1109/JRFID.2018.2822770 Google Scholar
20. Jauregi, I., H. Solar, A. Beriain, I. Zalbide, A. Jimenez, I. Galarraga, and R. Berenguer, "UHF RFID temperature sensor assisted with body-heat dissipation energy harvesting," IEEE Sensors Journal, Vol. 17, No. 5, 1471-1478, 2016.
doi:10.1109/JSEN.2016.2638473 Google Scholar
21. Sun, H., Y.-X. Guo, M. He, and Z. Zhong, "A dual-band rectenna using broadband Yagi antenna array for ambient RF power harvesting," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 918-921, 2013.
doi:10.1109/LAWP.2013.2272873 Google Scholar
22. Almoneef, T. S., F. Erkmen, and O. M. Ramahi, "Harvesting the energy of multi-polarized electromagnetic waves," Scientific Reports, Vol. 7, No. 1, 1-14, 2017.
doi:10.1038/s41598-017-15298-5 Google Scholar
23. Lu, P., C. Song, and K. M. Huang, "A compact rectenna design with wide input power range for wireless power transfer," IEEE Transactions on Power Electronics, Vol. 35, No. 7, 6705-6710, 2020.
doi:10.1109/TPEL.2019.2963422 Google Scholar
24. Lu, P., C. Song, F. Cheng, B. Zhang, and K. M. Huang, "A self-biased adaptive reconfigurable rectenna for microwave power transmission," IEEE Transactions on Power Electronics, 2020.
doi:10.1109/TPEL.2019.2963422 Google Scholar
25. Sun, H., H. He, and J. Huang, "Polarization-insensitive rectenna arrays with different power combining strategies," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 3, 492-496, 2020.
doi:10.1109/LAWP.2020.2968616 Google Scholar
26. Vital, D., S. Bhardwaj, and J. L. Volakis, "Textile based large area RF-power harvesting system for wearable applications," IEEE Transactions on Antennas and Propagation, 2019. Google Scholar
27. Monti, G., L. Corchia, and L. Tarricone, "UHF wearable rectenna on textile materials," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 7, 3869-3873, 2013.
doi:10.1109/TAP.2013.2254693 Google Scholar
28. Palazzi, V., J. Hester, J. Bito, F. Alimenti, C. Kalialakis, A. Collado, P. Mezzanotte, A. Georgiadis, L. Roselli, and M. M. Ten, "A novel ultra-lightweight multiband rectenna on paper for RF energy harvesting in the next generation LTE bands," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, No. 1, 366-379, 2017.
doi:10.1109/TMTT.2017.2721399 Google Scholar
29. Lin, C.-H., C.-W. Chiu, and J.-Y. Gong, "A wearable rectenna to harvest low-power RF energy for wireless healthcare applications," 2018 11th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI) IEEE, 1-5, 2018. Google Scholar
30. Asif, S. M., A. Iftikhar, J. W. Hansen, M. S. Khan, D. L. Ewert, and B. D. Braaten, "A novel RF-powered wireless pacing via a rectenna-based pacemaker and a wearable transmit-antenna array," IEEE Access, Vol. 7, 1139-1148, 2018. Google Scholar
31. Ahmed, M. I., M. F. Ahmed, A.-E. H. Shaalan, et al. "SAR calculations of novel wearable fractal antenna on metamaterial cell for search and rescue applications," Progress In Electromagnetics Research, Vol. 53, 99-110, 2017.
doi:10.2528/PIERM16110706 Google Scholar
32. Il Kwak, S., D.-U. Sim, J. H. Kwon, and Y. J. Yoon, "Design of PIFA with metamaterials for body- SAR reduction in wearable applications," IEEE Transactions on Electromagnetic Compatibility, Vol. 59, No. 1, 297-300, 2016.
doi:10.1109/TEMC.2016.2593493 Google Scholar