Vol. 95
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-08-17
Flexible Metamaterial Electromagnetic Harvester Using Modified Split-Ring Resonator
By
Progress In Electromagnetics Research M, Vol. 95, 135-144, 2020
Abstract
In this paper, a flexible metamaterial-based electromagnetic harvester is proposed for wearable applications at microwave regime. The proposed harvesting structure is composed of a modifi ed confi guration from the conventional Split-Ring Resonator (SRR) inclusion and is printed on a grounded very thin flexible substrate. The proposed wearable harvester structure provides several interesting features, including its robustness, sustainability and ease of integration with flexible electronics and sensors. Numerical full-wave studies are conducted, where results from a periodic arrangement of the proposed harvesting unit cell along with several two-dimensional arrays of harvesters are presented and discussed. Based on the numerical studies, the proposed electromagnetic harvesting structure exhibits good efficiency capability of power conversion from radio frequency received power to alternating-current harvested power across collecting loads above 90% for the three studied cases.
Citation
Mohammed M. Bait-Suwailam, Thamer S. Almoneef, and Saud M. Saeed, "Flexible Metamaterial Electromagnetic Harvester Using Modified Split-Ring Resonator," Progress In Electromagnetics Research M, Vol. 95, 135-144, 2020.
doi:10.2528/PIERM20051407
References

1. Jiang, S. and S. V. Georgakopoulos, "Optimum wireless powering of sensors embedded in concrete," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 2, 1106-1113, 2011.
doi:10.1109/TAP.2011.2173147

2. Shams, K. M. and M. Ali, "Wireless power transmission to a buried sensor in concrete," IEEE Sensors Journal, Vol. 7, No. 12, 1573-1577, 2007.
doi:10.1109/JSEN.2007.908230

3. Assimonis, S. D., V. Fusco, A. Georgiadis, and T. Samaras, "Efficient and sensitive electrically small rectenna for ultra-low power RF energy harvesting," Scientific Reports, Vol. 8, No. 1, 1-13, 2018.
doi:10.1038/s41598-018-33388-w

4. Shen, S., C.-Y. Chiu, and R. D. Murch, "Multiport pixel rectenna for ambient RF energy harvesting," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 2, 644-656, 2017.
doi:10.1109/TAP.2017.2786320

5. Andersson, M. A., A. Ozcelikkale, M. Johansson, U. Engstrom, A. Vorobiev, and J. Stake, "Feasibility of ambient RF energy harvesting for self-sustainable M2M communications using transparent and flexible graphene antennas," IEEE Access, Vol. 4, 5850-5857, 2016.
doi:10.1109/ACCESS.2016.2604078

6. Pinuela, M., P. D. Mitcheson, and S. Lucyszyn, "Ambient RF energy harvesting in urban and semi-urban environments," IEEE Transactions on Microwave Theory and Techniques, Vol. 61, No. 7, 2715-2726, 2013.
doi:10.1109/TMTT.2013.2262687

7. Apostolos, J. T., J. D. Logan, and W. Mouyos, Low frequency rectenna system for wireless charging, US Patent App. 16/569,814, January 2, 2020.

8. Takeno, K., "Wireless power transmission technology for mobile devices," IEICE Electronics Express, Vol. 10, No. 21, 20132010-20132010, 2013.
doi:10.1587/elex.10.20132010

9. Shinohara, N., "Rectennas for microwave power transmission," IEICE Electronics Express, Vol. 10, No. 21, 20132009-20132009, 2013.
doi:10.1587/elex.10.20132009

10. Ashoor, A. Z., T. S. Almoneef, and O. M. Ramahi, "A planar dipole array surface for electromagnetic energy harvesting and wireless power transfer," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, No. 3, 1553-1560, 2017.
doi:10.1109/TMTT.2017.2750163

11. Suh, Y.-H. and K. Chang, "A high-efficiency dual-frequency rectenna for 2.45- and 5.8-GHz wireless power transmission," IEEE Transactions on Microwave Theory and Techniques, Vol. 50, No. 7, 1784-1789, 2002.
doi:10.1109/TMTT.2002.800430

12. Glaser, P. E., "Power from the sun: Its future," Science, Vol. 162, No. 3856, 857-861, 1968.
doi:10.1126/science.162.3856.857

13. Erb, R., "Power from space — The tough questions: The 1995 Peter E. Glaser lecture," Acta Astronautica, Vol. 38, No. 4–8, 539-550, 1996.
doi:10.1016/0094-5765(96)82324-1

14. Shafique, K., B. A. Khawaja, M. D. Khurram, S. M. Sibtain, Y. Siddiqui, M. Mustaqim, H. T. Chattha, and X. Yang, "Energy harvesting using a low-cost rectenna for Internet of Things (IoT) applications," IEEE Access, Vol. 6, 30932-30941, 2018.
doi:10.1109/ACCESS.2018.2834392

15. Lin, W. and R. W. Ziolkowski, "A circularly polarized wireless power transfer system for internetof- things (IoT) applications," 2020 4th Australian Microwave Symposium (AMS) IEEE, 1-2, 2020.

16. Singh, N., S. Kumar, and B. K. Kanaujia, "A new trend to power up next-generation Internet of Things (IoT) devices: ‘rectenna’," Energy Conservation for IoT Devices, 331-356, Springer, 2019.
doi:10.1007/978-981-13-7399-2_14

17. Eid, A., J. G. Hester, J. Costantine, Y. Tawk, A. H. Ramadan, and M. M. Tentzeris, "A compact source-load agnostic flexible rectenna topology for IoT devices," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 4, 2621-2629, 2019.
doi:10.1109/TAP.2019.2955211

18. Michisaka, T., et al., "Novel sensing techniques of chipless RFID sensor for infrastructure," IEICE Communications Express, 2020.

19. Yang, S., M. Crisp, R. V. Penty, and I. H. White, "RFID enabled health monitoring system for aircraft landing gear," IEEE Journal of Radio Frequency Identification, Vol. 2, No. 3, 159-169, 2018.
doi:10.1109/JRFID.2018.2822770

20. Jauregi, I., H. Solar, A. Beriain, I. Zalbide, A. Jimenez, I. Galarraga, and R. Berenguer, "UHF RFID temperature sensor assisted with body-heat dissipation energy harvesting," IEEE Sensors Journal, Vol. 17, No. 5, 1471-1478, 2016.
doi:10.1109/JSEN.2016.2638473

21. Sun, H., Y.-X. Guo, M. He, and Z. Zhong, "A dual-band rectenna using broadband Yagi antenna array for ambient RF power harvesting," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 918-921, 2013.
doi:10.1109/LAWP.2013.2272873

22. Almoneef, T. S., F. Erkmen, and O. M. Ramahi, "Harvesting the energy of multi-polarized electromagnetic waves," Scientific Reports, Vol. 7, No. 1, 1-14, 2017.
doi:10.1038/s41598-017-15298-5

23. Lu, P., C. Song, and K. M. Huang, "A compact rectenna design with wide input power range for wireless power transfer," IEEE Transactions on Power Electronics, Vol. 35, No. 7, 6705-6710, 2020.
doi:10.1109/TPEL.2019.2963422

24. Lu, P., C. Song, F. Cheng, B. Zhang, and K. M. Huang, "A self-biased adaptive reconfigurable rectenna for microwave power transmission," IEEE Transactions on Power Electronics, 2020.
doi:10.1109/TPEL.2019.2963422

25. Sun, H., H. He, and J. Huang, "Polarization-insensitive rectenna arrays with different power combining strategies," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 3, 492-496, 2020.
doi:10.1109/LAWP.2020.2968616

26. Vital, D., S. Bhardwaj, and J. L. Volakis, "Textile based large area RF-power harvesting system for wearable applications," IEEE Transactions on Antennas and Propagation, 2019.

27. Monti, G., L. Corchia, and L. Tarricone, "UHF wearable rectenna on textile materials," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 7, 3869-3873, 2013.
doi:10.1109/TAP.2013.2254693

28. Palazzi, V., J. Hester, J. Bito, F. Alimenti, C. Kalialakis, A. Collado, P. Mezzanotte, A. Georgiadis, L. Roselli, and M. M. Ten, "A novel ultra-lightweight multiband rectenna on paper for RF energy harvesting in the next generation LTE bands," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, No. 1, 366-379, 2017.
doi:10.1109/TMTT.2017.2721399

29. Lin, C.-H., C.-W. Chiu, and J.-Y. Gong, "A wearable rectenna to harvest low-power RF energy for wireless healthcare applications," 2018 11th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI) IEEE, 1-5, 2018.

30. Asif, S. M., A. Iftikhar, J. W. Hansen, M. S. Khan, D. L. Ewert, and B. D. Braaten, "A novel RF-powered wireless pacing via a rectenna-based pacemaker and a wearable transmit-antenna array," IEEE Access, Vol. 7, 1139-1148, 2018.

31. Ahmed, M. I., M. F. Ahmed, A.-E. H. Shaalan, et al. "SAR calculations of novel wearable fractal antenna on metamaterial cell for search and rescue applications," Progress In Electromagnetics Research, Vol. 53, 99-110, 2017.
doi:10.2528/PIERM16110706

32. Il Kwak, S., D.-U. Sim, J. H. Kwon, and Y. J. Yoon, "Design of PIFA with metamaterials for body- SAR reduction in wearable applications," IEEE Transactions on Electromagnetic Compatibility, Vol. 59, No. 1, 297-300, 2016.
doi:10.1109/TEMC.2016.2593493