Vol. 96
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-09-24
An Extended Hybrid Analytical Model for Shielding Effectiveness Prediction of Multi-Cavity Structure with Numerous Apertures
By
Progress In Electromagnetics Research M, Vol. 96, 181-190, 2020
Abstract
In this paper, we extend our previously published hybrid analytical model for estimation of shielding effectiveness of a dual-cavity structure with an aperture array to generalize the model for a wider range of applications. The aperture array in the center and off-center, higher order modes, and multi-cavity are taken into consideration, respectively. At last, comparations of the results calculated by the extended hybrid analytical model with those obtained by the simulation software CST are given. The results show that the extended hybrid analytical model for shielding effectiveness prediction of a three-cavity structure with numerous apertures has high precision and high efficiency.
Citation
Wei Shen, Sen Wang, Wei Li, Hai Jin, and Hongliang Zhang, "An Extended Hybrid Analytical Model for Shielding Effectiveness Prediction of Multi-Cavity Structure with Numerous Apertures," Progress In Electromagnetics Research M, Vol. 96, 181-190, 2020.
doi:10.2528/PIERM20081201
References

1. Araneo, R. and G. Lovat, "Fast MoM analysis of the shielding effectiveness of rectangular enclosures with apertures, metal plates, and conducting objects," IEEE Transactions on Electromagnetic Compatibility, Vol. 51, No. 2, 274-283, 2009.
doi:10.1109/TEMC.2008.2010456

2. Nie, B.-L. and P.-A. Du, "Electromagnetic shielding performance of highly resonant enclosures by a combination of the FETD and extended Prony's method," IEEE Transactions on Electromagnetic Compatibility, Vol. 56, No. 2, 320-327, 2013.
doi:10.1109/TEMC.2013.2279404

3. Kuo, C.-W. and C.-M. Kuo, "Finite-difference time-domain analysis of the shielding effectiveness of metallic enclosures with apertures using a novel subgridding algorithm," IEEE Transactions on Electromagnetic Compatibility, Vol. 58, No. 5, 1595-1601, 2016.
doi:10.1109/TEMC.2016.2572210

4. Basyigit, I. B., H. Dogan, and S. Helhel, "Simulation of metallic enclosures with apertures on electrical shielding effectiveness," 2017 10th International Conference on Electrical and Electronics Engineering (ELECO), 1082-1084, IEEE, 2017.

5. Georgakopoulos, S. V., C. R. Birtcher, and C. A. Balanis, "HIRF penetration through apertures: FDTD versus measurements," IEEE Transactions on Electromagnetic Compatibility, Vol. 43, No. 3, 282-294, 2001.
doi:10.1109/15.942601

6. Lei, J.-Z., C.-H. Liang, and Y. Zhang, "Study on shielding effectiveness of metallic cavities with apertures by combining parallel FDTD method with windowing technique," Progress In Electromagnetics Research, Vol. 74, 85-112, 2007.
doi:10.2528/PIER07041905

7. Baum, C. E., T. K. Liu, and F. M. Tesche, "On the analysis of general multiconductor transmission-line networks," Interaction Note, Vol. 350, No. 6, 467-547, 1978.

8. Baum, C. E., "Including apertures and cavities in the BLT formalism," Electromagnetics, Vol. 25, No. 7–8, 623-635, 2005.
doi:10.1080/02726340500214852

9. Kan, Y., L.-P. Yan, X. Zhao, H.-J. Zhou, Q. Liu, and K.-M. Huang, "Electromagnetic topology based fast algorithm for shielding effectiveness estimation of multiple enclosures with apertures," Acta Physica Sinica, Vol. 65, No. 3, 030702-030702, 2016.

10. Robinson, M. P., J. Turner, D.W. Thomas, J. Dawson, M. Ganley, A. Marvin, S. Porter, T. Benson, and C. Christopoulos, "Shielding effectiveness of a rectangular enclosure with a rectangular aperture," Electronics Letters, Vol. 32, No. 17, 1559-1560, 1996.
doi:10.1049/el:19961030

11. Robinson, M. P., T. M. Benson, C. Christopoulos, J. F. Dawson, M. Ganley, A. Marvin, S. Porter, and D. W. Thomas, "Analytical formulation for the shielding effectiveness of enclosures with apertures," IEEE Transactions on Electromagnetic Compatibility, Vol. 40, No. 3, 240-248, 1998.
doi:10.1109/15.709422

12. Fang, C.-H., S. Zheng, H. Tan, D. Xie, and Q. Zhang, "Shielding effectiveness measurements on enclosures with various aperture by both mode-tuned reverberation chamber and GTEM cell methodologies," Progress In Electromagnetics Research B, Vol. 2, 103-114, 2008.

13. Radivojevic, M. Vanja, R. Slavko, A. Viktorija, and N. Natasa, "The shielding effectiveness measurements of a rectangular enclosure perforated with slot aperture," 2017 International Conference on Smart Systems and Technologies (SST), 121-126, 2017.
doi:10.1109/SST.2017.8188681

14. Shourvarzi, A. and J. Mojtaba, "Shielding effectiveness estimation of a metallic enclosure with an aperture using S-parameter analysis: Analytic validation and experiment," IEEE Transactions on Electromagnetic Compatibility, Vol. 59, No. 2, 537-540, 2016.
doi:10.1109/TEMC.2016.2615525

15. Thomas, D. W., A. C. Denton, T. Konefal, T. Benson, C. Christopoulos, J. Dawson, A. Marvin, S. J. Porter, and P. Sewell, "Model of the electromagnetic fields inside a cuboidal enclosure populated with conducting planes or printed circuit boards," IEEE Transactions on Electromagnetic Compatibility, Vol. 43, No. 2, 161-169, 2001.
doi:10.1109/15.925536

16. Konefal, T., J. Dawson, and A. Marvin, "Improved aperture model for shielding prediction," IEEE Symposium on Electromagnetic Compatibility. Symposium Record (Cat. No. 03CH37446), 187-192, 2003.
doi:10.1109/ISEMC.2003.1236589

17. Dan, S., Y. Shen, and Y. Gao, "3 high-order mode transmission line model of enclosure with off-center aperture," International Symposium on Electromagnetic Compatibility, 361-364, IEEE, 2007.

18. Dehkhoda, P., A. Tavakoli, and R. Moini, "An efficient and reliable shielding effectiveness evaluation of a rectangular enclosure with numerous apertures," IEEE Transactions on Electromagnetic Compatibility, Vol. 50, No. 1, 208-212, 2008.
doi:10.1109/TEMC.2007.911922

19. Dehkhoda, P., A. Tavakoli, and R. Moini, "Fast calculation of the shielding effectiveness for a rectangular enclosure of finite wall thickness and with numerous small apertures," Progress In Electromagnetics Research, Vol. 86, 341-355, 2008.
doi:10.2528/PIER08100803

20. Ren, D., P.-A. Du, Y. He, K. Chen, J.-W. Luo, and D. G. Michelson, "A fast calculation approach for the shielding effectiveness of an enclosure with numerous small apertures," IEEE Transactions on Electromagnetic Compatibility, Vol. 58, No. 4, 1033-1041, 2016.
doi:10.1109/TEMC.2016.2547739

21. Yin, M.-C. and P.-A. Du, "An improved circuit model for the prediction of the shielding effectiveness and resonances of an enclosure with apertures," IEEE Transactions on Electromagnetic Compatibility, Vol. 58, No. 2, 448-456, 2016.
doi:10.1109/TEMC.2016.2517163

22. Shourvarzi, A. and M. Joodaki, "Using aperture impedance for shielding effectiveness estimation of a metallic enclosure with multiple apertures on different walls considering higher order modes," IEEE Transactions on Electromagnetic Compatibility, Vol. 60, No. 3, 629-637, 2017.
doi:10.1109/TEMC.2017.2738563

23. Jin, H., H. Zhang, Y. Ma, K. Chen, and X. Sun, "An analytical hybrid model for the shielding effectiveness evaluation of a dual-cavity structure with an aperture array," Progress In Electromagnetics Research Letters, Vol. 91, 109-116, 2020.
doi:10.2528/PIERL20033101