Vol. 102
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2021-04-27
Predictive Direct Control of Permanent Magnet Assisted Bearingless Synchronous Reluctance Motor Based on Super Twisting Sliding Mode
By
Progress In Electromagnetics Research M, Vol. 102, 105-115, 2021
Abstract
In order to solve the problem of the low direct control accuracy of permanent magnet assisted bearingless synchronous reluctance motor (PMa-BSynRM), which caused by transmission delay, the predictive control is applied to direct control of PMa-BSynRM. Meanwhile, in view of the disadvantages of large ripple (torque ripple, flux linkage ripple) and poor robustness in traditional predictive direct control (PDC), a fractional super twisting sliding mode controller (FSTMC) is proposed. Firstly, the mathematical models of torque and radial suspension force of PMa-BSynRM are derived. Secondly, the torque and flux controller based on FSTMC are designed, and the stability is verified. Thirdly, the torque predictive controller and levitation force predictive controller are designed, and the algorithm of PDC is described. Finally, the FSTMC-PDC system of PMa-BSynRM is built and simulated by Matlab/Simulink module. The simulated and experimental results confirm the validity and superiority of the proposed method.
Citation
Min Gao, Huangqiu Zhu, and Yijian Shi, "Predictive Direct Control of Permanent Magnet Assisted Bearingless Synchronous Reluctance Motor Based on Super Twisting Sliding Mode," Progress In Electromagnetics Research M, Vol. 102, 105-115, 2021.
doi:10.2528/PIERM21031503
References

1. Zhu, H.-Q. and Y. Xu, "Permanent magnet parameter design and performance analysis of bearingless flux switching permanent magnet motor," IEEE Transactions on Industrial Electronics, Vol. 68, No. 5, 4153-4163, 2021.
doi:10.1109/TIE.2020.2984434

2. Ding, H.-F., H.-Q. Zhu, and Y.-Z. Hua, "Optimization design of bearingless synchronous reluctance motor," IEEE Transactions on Applied Superconductivity, Vol. 28, No. 3, 1-5, 2018.

3. Chiba, A., T. Fukao, O. Ichikawa, et al. Magnetic Bearings and Bearingless Drives, 238-250, Elsevier Newnes Press, Boston, 2005.

4. Hu, W.-C., Y.-C. Li, Z.-B. Yang, et al. "Direct torque control of bearingless synchronous reluctance motor," Applied Mechanics and Materials, Vol. 25, No. 150, 36-39, 2012.
doi:10.4028/www.scientific.net/AMM.150.36

5. Hu, W.-C., Y.-C. Li, H.-Q. Zhu, and et al, "Direct radial suspension force control algorithm of bearingless synchronous reluctance motor," Advance Electrical and Electronics Engineering, Vol. 23, No. 87, 401-408, 2011.
doi:10.1007/978-3-642-19712-3_50

6. Ban, F., G.-K. Lian, J.-H. Zhang, et al. "Study on a novel predictive torque control strategy based on the finite control set for PMSM," IEEE Transactions on Applied Superconductivity, Vol. 29, No. 2, 1-6, 2019.
doi:10.1109/TASC.2019.2890837

7. Kim, S.-J., J. Park, and D.-H. Lee, "Zero voltage vector - based predictive direct torque control for PMSM," IEEE Student Conference on Electric Machines and Systems, 1-6, Busan, Korea (South), 2019.

8. Wang, X.-Q., Z. Wang, Z.-X. Xu, et al. "Optimization of torque tracking performance for direct-torque-controlled PMSM drives with composite torque regulator," IEEE Transactions on Industrial Electronics], Vol. 67, No. 12, 10095-10108, 2020.
doi:10.1109/TIE.2019.2962451

9. Nikzad, M. R., B. Asaei, and O. Ahmadi, "Discrete duty-cycle-control method for direct torque control of induction motor drives with model predictive solution," IEEE Transactions on Power Electronics, Vol. 33, No. 3, 2317-2329, 2018.
doi:10.1109/TPEL.2017.2690304

10. Liu, Q. and K. Hameyer, "Torque ripple minimization for direct torque control of PMSM with modified FCSMPC," IEEE Transactions on Industry Applications, Vol. 52, No. 6, 4855-4864, 2016.
doi:10.1109/TIA.2016.2599902

11. Cheema, M. A., J. E. Fletcher, M. Farshadnia, et al. "Sliding mode based combined speed and direct thrust force control of linear permanent magnet synchronous motors with first-order plus integral sliding condition," IEEE Transactions on Power Electronics, Vol. 34, No. 3, 2526-2538, 2019.
doi:10.1109/TPEL.2018.2839060

12. Ammar, A., T. Ameid, Y. Azzoug, et al. "Implementation of sliding mode based-direct flux and torque control for induction motor drive with efficiency optimization," International Conference on Advanced Electrical Engineering, 1-6, Algiers, Algeria, 2019.

13. Sun, X., J. Wu, G. Lei, et al. "Torque ripple reduction of SRM drive using improved direct torque control with sliding mode controller and observer," IEEE Transactions on Industrial Electronics, Vol. 1, No. 1, 21-32, 2020.

14. Chen, S. Z., N. C. Cheung, K. C. Wong, et al. "Integral sliding-mode direct torque control of doubly-fed induction generators under unbalanced grid voltage," IEEE Transactions on Energy Conversion, Vol. 25, No. 2, 356-368, 2010.
doi:10.1109/TEC.2009.2036249

15. Sami, I., S. Ullah, A. Basit, et al. IEEE Access, Vol. 8, 186740-186755, 2020.
doi:10.1109/ACCESS.2020.3028845

16. Hua, Y.-Z., H.-Q. Zhu, and Z.-H. Zhao, "Direct control of bearingless permanent magnet slice motor based on stator flux observer," EEE Student Conference on Electric Machines and Systems, 1-5, HHuzhou, China, 2018.

17. Mao, S., H. Tao, and Z. Zheng, "Sensorless control of induction motors based on fractional-order linear super-twisting sliding mode observer with flux linkage compensation," IEEE Access, Vol. 8, 172308-172317, 2020.
doi:10.1109/ACCESS.2020.3024626

18. Huang, J.-C., Q.-H. Xu, X.-X. Shi, et al. "Direct torque control of PMSM based on fractional order sliding mode variable structure and space vector pulse width modulation," Proceedings of the 33rd Chinese Control Conference, 8097-8101, Nanjing, China, 2014.
doi:10.1109/ChiCC.2014.6896355