Vol. 102
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2021-05-18
Global Inductance Computation of a Multilayer Circular Air Coil with a Wire of Rectangular Cross Section: Case of a Uniform Current Distribution
By
Progress In Electromagnetics Research M, Vol. 102, 149-158, 2021
Abstract
In this paper we present a simple approach to compute quickly and accurately the global inductance of multilayer circular air coils with a wire of rectangular cross section. The case of the uniform current density distribution in the wire cross section is considered. The approach, implemented under GNU Octave, computes the inductance of the multilayer coil in three steps. First, the self-inductance of each coil turn is computed using the Maxwell's formula. Secondly, each wire section is subdivided into several negligible square or rectangular subsections to form a filiform turn, and then the mutual inductances between the turns are computed using Rosa's formula. The last step sums all obtained self-inductances and mutual inductances to deduce the global inductance of the multilayer coil. To verify the efficiency and accuracy of the proposed approach, the obtained equivalent inductance of each turn is compared to the computed one using finite element method implemented in FEMM open source. Furthermore, the global coil inductance is compared to the measured one. The proposed approach shows a good accuracy with a relative error less than 1% for all considered coils.
Citation
Samir Bensaid, "Global Inductance Computation of a Multilayer Circular Air Coil with a Wire of Rectangular Cross Section: Case of a Uniform Current Distribution," Progress In Electromagnetics Research M, Vol. 102, 149-158, 2021.
doi:10.2528/PIERM21031704
References

1. Rahimpour, E., J. Christian, K. Feser, and H. Mohseni, "Transfer function method to diagnose axial displacement and radial deformation of transformer windings," IEEE Transactions on Power Delivery, Vol. 18, No. 2, 493-505, 2003.
doi:10.1109/TPWRD.2003.809692

2. Miki, A., T. Hosoya, and K. A. Okuyama, "Calculation method for impulse voltage distribution and transferred voltage in transformer windings," IEEE Transactions on Power Apparatus and Systems, Vol. 3, 930-939, 1978.
doi:10.1109/TPAS.1978.354566

3. Ahour, J. N., S. Seyedtabaii, and G. B. Gharehpetian, "On the accuracy of detailed model inductance matrix estimation for air core winding," Archives of Electrical Engineering, Vol. 66, No. 4, 2017.
doi:10.1515/aee-2017-0060

4. Chibua, Y. and S. Fujita, "High frequency model of transformer winding," Electrical Engineering in Japan, Vol. 146, No. 3, 8-16, 2004.
doi:10.1002/eej.10280

5. Lyle, T. T., "On the self-inductance of circular coils of rectangular section," Phylosofical Transaction of the Royal Society A, Mathermatical, Physical and Engineering Sciences, Vol. 213, 421-435, 1914.

6. Kim, K. B., E. Levi, Z. Zabar, and L. Birenbaum, "Mutual inductance of noncoaxial circular coils with constant current density," IEEE Transactions on Magnetics, Vol. 33, No. 5, 4303-4309, 1997.
doi:10.1109/20.620439

7. Maxwell, J. C., A Treatise on Electricity and Magnetism (Vol. 1), Clarendon Press, Oxford, 1873.

8. Grover, F. W., Inductance Calculations, Dover, New York, 1964.

9. Akyel, C., S. Babic, and S. Kincic, "New and fast procedures for calculating the mutual inductance of coaxial circular coils (circular coil-disk coil)," IEEE Transactions on Magnetics, Vol. 38, No. 5, 2367-2369, 2002.
doi:10.1109/TMAG.2002.803576

10. Babic, S. I. and C. Akyel, "New analytic-numerical solutions for the mutual inductance of two coaxial circular coils with rectangular cross section in air," IEEE Transactions on Magnetics, Vol. 42, No. 6, 1661-1669, 2006.
doi:10.1109/TMAG.2006.872626

11. Babic, S. I. and C. Akyel, "New formulas for mutual inductance and axial magnetic force between magnetically coupled coils: Thick circular coil of the rectangular cross-section-thin disk coil (pancake)," IEEE Transactions on Magnetics, Vol. 49, No. 2, 860-868, 2013.
doi:10.1109/TMAG.2012.2212909

12. Ravaud, R., G. Lemarquand, V. Lemarquand, S. Babic, and C. Akyel, "Mutual inductance and force exerted between thick coils," Progress In Electromagnetic Research, Vol. 102, 367-380, 2010.
doi:10.2528/PIER10012806

13. Conway, J. T., "Inductance calculations for circular coils of rectangular cross section and parallel axes using bessel and struve functions," IEEE Transactions on Magnetics, Vol. 46, No. 1, 75-81, 2010.
doi:10.1109/TMAG.2009.2026574

14. Holloway, C. L., E. Kuester, and Z. F. Zabar, "DC internal inductance for a conductor of rectangular cross section," IEEE Transaction on Electromagnetic Compatibility, Vol. 51, No. 2, 338-344, 2009.
doi:10.1109/TEMC.2009.2016104

15. Pineda-Sanchez, M., A. Sapena-Bano, J. Perez-Cruz, J. Martinez-Roman, R. Puche-Panadero, and M. Riera-Guasp, "Internal inductance of a conductor of rectangular cross-section using the proper generalized decomposition," COMPEL — The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, Vol. 35, No. 6, 2007-2021, 2016.
doi:10.1108/COMPEL-03-2016-0124

16. Parise, M. and G. Antonini, "On the inductive coupling between two parallel thin-wire circular loop antennas," IEEE Transactions on Electromagnetic Compatibility, Vol. 60, No. 5, 1865-1872, 2018.
doi:10.1109/TEMC.2018.2790265

17. Parise, M., L. Lombardi, F. Ferranti, and G. Antonini, "Magnetic coupling between coplanar filamentary coil antennas with uniform current," IEEE Transactions on Electromagnetic Compatibility, Vol. 62, No. 2, 622-626, 2020.
doi:10.1109/TEMC.2019.2904516

18. Rosa, E. B. and L. Cohen, "The mutual inductance of two circular coaxial coils of rectangular section," US Government Printing Office, 1906.

19. Meeker, D., "Finite element method magnetics (FEMM),", www.femm.info, 2010..