1. Zhang, Z., X. Cao, and L. Sijia, "Broadband metamaterial reflectors for polarization manipulation based on cross/ring resonators," Radioengineering, Vol. 25, No. 3, 436-441, 2016.
doi:10.13164/re.2016.0436 Google Scholar
2. Zheng, Q., C. Guo, P. Yuan, Y.-H. Ren, and J. Ding, "Wideband and high-efficiency reflective polarization conversion metasurface based on anisotropic metamaterials," J. Electron. Mater., Vol. 47, No. 5, 2658-2666, 2018.
doi:10.1007/s11664-018-6113-0 Google Scholar
3. Beruete, M., M. Navarro-Cıa, M. Sorolla, and I. Campillo, "Polarization selection with stacked hole array metamaterial," J. Appl. Phys., Vol. 103, No. 5, 1-5, 2008.
doi:10.1063/1.2841471 Google Scholar
4. Xu, P., S.-Y. Wang, and W. Geyi, "A linear polarization converter with near unity efficiency in microwave regime," J. Appl. Phys., Vol. 121, 144502, 2017.
doi:10.1063/1.4979880 Google Scholar
5. Pfeiffer, C. and A. Grbic, "Millimeter-wave transmitarrays for wavefront and polarization control," IEEE Trans. Microw. Theory Tech., Vol. 61, No. 12, 4407-4417, 2013.
doi:10.1109/TMTT.2013.2287173 Google Scholar
6. Zhao, J. C. and Y. Z. Cheng, "Ultra-broadband and high-efficiency reflective linear polarization convertor based on planar anisotropic metamaterial in microwave region," Opt., Vol. 136, No. 3, 52-57, 2017. Google Scholar
7. Zheng, Q., C. Guo, G. A. E. Vandenbosch, P. Yuan, and J. Ding, "Dual-broadband highly efficient reflective multi-polarisation converter based on multi-order plasmon resonant metasurface," IET Microwaves, Antennas Propag., Vol. 14, No. 9, 967-972, 2020.
doi:10.1049/iet-map.2019.0984 Google Scholar
8. Zheng, Q., C. Guo, and J. Ding, "Wideband metasurface-based reflective polarization converter for linear-to-linear and linear-to-circular polarization conversion," IEEE Antennas Wirel. Propag. Lett., Vol. 17, No. 8, 1459-1463, 2018.
doi:10.1109/LAWP.2018.2849352 Google Scholar
9. Grady, N. K., et al. "Terahertz metamaterials for linear polarization conversion and anomalous refraction," Science, Vol. 340, No. 6138, 1304-1307, 2013.
doi:10.1126/science.1235399 Google Scholar
10. Pan, W., Q. Chen, Y. Ma, X. Wang, and X. Ren, "Design and analysis of a broadband terahertz polarization converter with significant asymmetric transmission enhancement," Opt. Commun., Vol. 459, 124901, 2020.
doi:10.1016/j.optcom.2019.124901 Google Scholar
11. Ma, X., et al. "An active metamaterial for polarization manipulating," Adv. Opt. Mater., Vol. 2, No. 10, 945-949, 2014.
doi:10.1002/adom.201400212 Google Scholar
12. Wang, H. B., Y. J. Cheng, and Z. N. Chen, "Wideband and wide-angle single-layered-substrate linear-to-circular polarization metasurface converter," IEEE Trans. Antennas Propag., Vol. 68, No. 2, 1186-1191, 2020.
doi:10.1109/TAP.2019.2938683 Google Scholar
13. Doumanis, E., et al. "Electronically reconfigurable liquid crystal based mm-wave polarization converter," IEEE Trans. Antennas Propag., Vol. 62, No. 4, 2302-2307, 2014.
doi:10.1109/TAP.2014.2302844 Google Scholar
14. Rutz, F., T. Hasek, M. Koch, H. Richter, and U. Ewert, "Terahertz birefringence of liquid crystal polymers," Appl. Phys. Lett., Vol. 89, 221911, 2006.
doi:10.1063/1.2397564 Google Scholar
15. Li, Y., Q. Cao, and Y. Wang, "A wideband multifunctional multilayer switchable linear polarization metasurface," IEEE Antennas Wirel. Propag. Lett., Vol. 17, No. 7, 1314-1318, 2018.
doi:10.1109/LAWP.2018.2843816 Google Scholar
16. Abadi, S. M. A. M. H. and N. Behdad, "Wideband linear-to-circular polarization converters based on miniaturized-element frequency selective surfaces," IEEE Trans. Antennas Propag., Vol. 64, No. 2, 525-534, 2016.
doi:10.1109/TAP.2015.2504999 Google Scholar
17. Khan, M. I., B. Hu, Y. Chen, N. Ullah, M. J. I. Khan, and A. U. R. Khalid, "Multiband efficient asymmetric transmission with polarization conversion using chiral metasurface," IEEE Antennas Wirel. Propag. Lett., Vol. 19, No. 7, 1137-1141, 2020.
doi:10.1109/LAWP.2020.2991521 Google Scholar
18. Fahad, A. K., et al. "Triband ultrathin polarization converter for X/Ku/Ka-band microwave transmission," IEEE Microw. Wirel. Components Lett., Vol. 30, No. 4, 351-354, 2020.
doi:10.1109/LMWC.2020.2973040 Google Scholar
19. Yang, W., K.-W. Tam, W.-W. Choi, W. Che, and H. T. Hui, "Novel polarization rotation technique based on an artificial magnetic conductor and its application in a low-profile circular polarization antenna," IEEE Trans. Antennas Propag., Vol. 62, No. 12, 6206-6216, 2014.
doi:10.1109/TAP.2014.2361130 Google Scholar
20. Li, F., et al. "Compact high-efficiency broadband metamaterial polarizing reflector at microwave frequencies," IEEE Trans. Microw. Theory Tech., Vol. 67, No. 2, 606-614, 2019.
doi:10.1109/TMTT.2018.2881967 Google Scholar
21. Jia, Y., Y. Liu, Y. J. Guo, K. Li, and S. Gong, "A dual-patch polarization rotation reflective surface and its application to ultra-wideband RCS reduction," IEEE Trans. Antennas Propag., Vol. 65, No. 6, 3291-3295, 2017.
doi:10.1109/TAP.2017.2694879 Google Scholar
22. Huang, X., H. Yang, D. Zhang, and Y. Luo, "Ultrathin dual-band metasurface polarization converter," IEEE Trans. Antennas Propag., Vol. 67, No. 7, 4636-4641, 2019.
doi:10.1109/TAP.2019.2911377 Google Scholar
23. Khan, M. I., B. Hu, Y. Chen, N. Ullah, M. J. I. Khan, and A. R. Khalid, "Multiband efficient asymmetric transmission with polarization conversion using chiral metasurface," IEEE Antennas Wirel. Propag. Lett., Vol. 19, No. 7, 1137-1141, 2020.
doi:10.1109/LAWP.2020.2991521 Google Scholar
24. Bakal, F., A. Yapici, M. Karaaslan, and O. Akgol, "Microwave absorption performance of hexagonal nano boron nitride doped basalt fabric-reinforced epoxy composites," Aircr. Eng. Aerosp. Technol., Vol. 93, No. 1, 205-211, 2021.
doi:10.1108/AEAT-06-2020-0126 Google Scholar
25. Yang, Z., S. Yu, N. Kou, F. Long, Z. Ding, and Z. Zhang, "Ultrathin tri-band reflective cross-polarization artificial electromagnetic metasurface," Journal of Electromagnetic Waves and Applications, Vol. 34, No. 10, 1491-1501, 2020.
doi:10.1080/09205071.2020.1787232 Google Scholar
26. Al-Badri, K. S. L., Y. I. Abdulkarim, F. O. Alkurt, and M. Karaaslan, "Simulated and experimental ¨ verification of the microwave dual-band metamaterial perfect absorber based on square patch with a 45◦ diagonal slot structure," Journal of Electromagnetic Waves and Applications, 12, 2021. Google Scholar
27. Sagık, M., "Optimizing the gain and directivity of a microstrip antenna with metamaterial structures by using artificial neural network approach," Wirel. Pers. Commun., Vol. 118, No. 1, 109-124, 2021.
doi:10.1007/s11277-020-08004-8 Google Scholar