1. Vullers, R., R. Schaijk, H. Visser, J. Penders, and C. Hoof, "Energy harvesting for autonomous wireless sensor networks," IEEE Solid-State Circuits Mag., Vol. 2, No. 2, 29-38, 2010.
doi:10.1109/MSSC.2010.936667 Google Scholar
2. Nguyen, N., Q. C. Nguyen, and M. T. Le, "A novel autonomous wireless sensor node for IoT applications," TELKOMNIKA Telecommun. Comput. Electron. Control, Vol. 17, No. 5, 2389, Oct. 2019. Google Scholar
3. Nguyen, T. H., et al. "Smart shoe based on battery-free Bluetooth low energy sensor," Industrial Networks and Intelligent Systems, N.-S. Vo, V.-P. Hoang, and Q.-T. Vien, Eds., Vol. 379, 156-166, Springer International Publishing, Cham, 2021. Google Scholar
4. Cansiz, M., D. Altinel, and G. K. Kurt, "Efficiency in RF energy harvesting systems: A comprehensive review," Energy, Vol. 174, 292-309, May 2019.
doi:10.1016/j.energy.2019.02.100 Google Scholar
5. Pinuela, M., P. D. Mitcheson, and S. Lucyszyn, "Ambient RF energy harvesting in urban and semi-urban environments," IEEE Trans. Microw. Theory Tech., Vol. 61, No. 7, 2715-2726, Jul. 2013.
doi:10.1109/TMTT.2013.2262687 Google Scholar
6. Chandrasekaran, K. T., K. Agarwal, Nasimuddin, A. Alphones, R. Mittra, and M. F. Karim, "Compact dual-band metamaterial-based high-efficiency rectenna: An application for ambient electromagnetic energy harvesting," IEEE Antennas Propag. Mag., Vol. 62, No. 3, 18-29, Jun. 2020.
doi:10.1109/MAP.2020.2982091 Google Scholar
7. Shen, S., C.-Y. Chiu, and R. D. Murch, "A dual-port triple-band L-probe microstrip patch rectenna for ambient RF energy harvesting," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 3071-3074, 2017.
doi:10.1109/LAWP.2017.2761397 Google Scholar
8. Mansour, M. M. and H. Kanaya, "Compact and broadband RF rectifier with 1.5 octave bandwidth based on a simple pair of L-section matching network," IEEE Microw. Wirel. Compon. Lett., Vol. 28, No. 4, 335-337, Apr. 2018.
doi:10.1109/LMWC.2018.2808419 Google Scholar
9. Daskalakis, S. N., A. Georgiadis, A. Collado, and M. M. Tentzeris, "An UHF rectifier with 100% bandwidth based on a ladder LC impedance matching network," 2017 12th European Microwave Integrated Circuits Conference (EuMIC), 411-414, Nuremberg, Oct. 2017. Google Scholar
10. Gorur, A. K. and C. Karpuz, "A novel microstrip triplexer based on meandered loop resonators," 2017 IEEE Asia Pacific Microwave Conference (APMC), 1242-1245, Kuala Lumpar, Nov. 2017. Google Scholar
11. Tang, C.-W. and C.-T. Tseng, "Design of a packaged microstrip triplexer with star-junction topology," 2012 42nd European Microwave Conference, 459-462, Amsterdam, Oct. 2012. Google Scholar
12. Chen, C.-F., T.-Y. Huang, T.-M. Shen, and R.-B. Wu, "A miniaturized microstrip common resonator triplexer without extra matching network," 2006 Asia-Pacific Microwave Conference, 1439-1442, Yokohama, Japan, Dec. 2006. Google Scholar
13. Elwi, T. A., Z. A. Abdul Hassain, and O. A. Tawfeeq, "Hilbert metamaterial printed antenna based on organic substrates for energy harvesting," IET Microw. Antennas Propag., Vol. 13, No. 12, 2185-2192, Oct. 2019.
doi:10.1049/iet-map.2018.5948 Google Scholar
14. Elwi, T. A. and S. G. Abdulqader, "Further investigation on solant-rectenna-based flexible Hilbert-shaped metamaterials," IET Nanodielectrics, Vol. 3, No. 3, 88-93, Sep. 2020.
doi:10.1049/iet-nde.2020.0013 Google Scholar
15. Elwi, T. A. and A. M. Al-Saegh, "Further realization of a flexible metamaterial-based antenna on indium nickel oxide polymerized palm fiber substrates for RF energy harvesting," Int. J. Microw. Wirel. Technol., Vol. 13, No. 1, 67-75, Feb. 2021.
doi:10.1017/S1759078720000665 Google Scholar
16. Elwi, T. A., "Novel UWB printed metamaterial microstrip antenna based organic substrates for RF-energy harvesting applications," AEU - Int. J. Electron. Commun., Vol. 101, 44-53, Mar. 2019.
doi:10.1016/j.aeue.2019.01.026 Google Scholar
17. Al-Dulaimi, Z., T. A. Elwi, D. C. Atilla, and C. Aydin, "Design of fractal based monopole antenna array with ultra-mutual coupling reduction for MIMO applications," 2018 18th Mediterranean Microwave Symposium (MMS), 39-42, Istanbul, Oct. 2018. Google Scholar
18. Pandey, R., A. K. Shankhwar, and A. Singh, "Design, analysis, and optimization of dual side printed multiband antenna for RF energy harvesting applications," Progress In Electromagnetics Research C, Vol. 102, 79-91, 2020.
doi:10.2528/PIERC20022901 Google Scholar
19. Deng, P.-H., M.-I. Lai, S.-K. Jeng, and C. H. Chen, "Design of matching circuits for microstrip triplexers based on stepped-impedance resonators," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 12, 4185-4192, Dec. 2006.
doi:10.1109/TMTT.2006.886161 Google Scholar
20. El-Tokhy, A., R. Wu, and Y. Wang, "Microstrip triplexer using a common triple-mode resonator," Microw. Opt. Technol. Lett., Vol. 60, No. 7, 1815-1820, Jul. 2018.
doi:10.1002/mop.31244 Google Scholar
21. Hemour, S., et al. "Towards low-power high-efficiency RF and microwave energy harvesting," IEEE Trans. Microw. Theory Tech., Vol. 62, No. 4, 965-976, Apr. 2014.
doi:10.1109/TMTT.2014.2305134 Google Scholar
22. Mattsson, M., C. I. Kolitsidas, and B. L. G. Jonsson, "Dual-band dual-polarized full-wave rectenna based on differential field sampling," IEEE Antennas Wirel. Propag. Lett., Vol. 17, No. 6, 956-959, Jun. 2018.
doi:10.1109/LAWP.2018.2825783 Google Scholar
23. Khemar, A., A. Kacha, H. Takhedmit, and G. Abib, "Design and experiments of a dual-band rectenna for ambient RF energy harvesting in urban environments," IET Microw. Antennas Propag., Vol. 12, No. 1, 49-55, Jan. 2018.
doi:10.1049/iet-map.2016.1040 Google Scholar
24. Boursianis, A. D., et al. "Triple-band single-layer rectenna for outdoor RF energy harvesting applications," Sensors, Vol. 21, No. 10, 3460, May 2021.
doi:10.3390/s21103460 Google Scholar
25. Balanis, C. A., Antenna Theory: Analysis and Design, 4th Ed., Wiley, 2016.