Vol. 104
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2021-07-28
A Multidirectional Triple-Band Rectenna for Outdoor RF Energy Harvesting from GSM900/GSM1800/UMTS2100 Toward Self-Powered IoT Devices
By
Progress In Electromagnetics Research M, Vol. 104, 1-12, 2021
Abstract
Due to low power density, it is difficult for a single-band rectenna to harvest enough power for IoT devices like wireless sensors. Thus to supply these consuming devices, harvesting RF energy from multiple frequencies is a solution to enhance the amount of harvested DC power. In this work, we introduce a triple-band rectenna, working at 900 MHz, 1.8 GHz and 2.1 GHz, three readily available bands in the ambience, for energy harvesting application. The proposed rectenna consists of three monoband rectifiers connected to a multi-band receiving antenna via a highly efficient triplexer. The antenna is made by superposing two concentric rings and manipulating their radii to achieve the desirable operating frequencies, with antenna gains of respectively 2.5 dBi, 4.5 dBi, and 4 dBi. The contiguous triplexer is made by connecting open stubs band-reject filters and optimizing their positions, resulting in the triplexing efficiency higher than 75%. The measured RF-DC efficiency under -10 dBm triple-tone input power is 40%.
Citation
Minh Thuy Le Quang Chung Tran Anh Tuan Le Dinh Minh , "A Multidirectional Triple-Band Rectenna for Outdoor RF Energy Harvesting from GSM900/GSM1800/UMTS2100 Toward Self-Powered IoT Devices," Progress In Electromagnetics Research M, Vol. 104, 1-12, 2021.
doi:10.2528/PIERM21061304
http://www.jpier.org/PIERM/pier.php?paper=21061304
References

1. Vullers, R., R. Schaijk, H. Visser, J. Penders, and C. Hoof, "Energy harvesting for autonomous wireless sensor networks," IEEE Solid-State Circuits Mag., Vol. 2, No. 2, 29-38, 2010.
doi:10.1109/MSSC.2010.936667

2. Nguyen, N., Q. C. Nguyen, and M. T. Le, "A novel autonomous wireless sensor node for IoT applications," TELKOMNIKA Telecommun. Comput. Electron. Control, Vol. 17, No. 5, 2389, Oct. 2019.

3. Nguyen, T. H., et al., "Smart shoe based on battery-free Bluetooth low energy sensor," Industrial Networks and Intelligent Systems, N.-S. Vo, V.-P. Hoang, and Q.-T. Vien, Eds., Vol. 379, 156-166, Springer International Publishing, Cham, 2021.

4. Cansiz, M., D. Altinel, and G. K. Kurt, "Efficiency in RF energy harvesting systems: A comprehensive review," Energy, Vol. 174, 292-309, May 2019.
doi:10.1016/j.energy.2019.02.100

5. Pinuela, M., P. D. Mitcheson, and S. Lucyszyn, "Ambient RF energy harvesting in urban and semi-urban environments," IEEE Trans. Microw. Theory Tech., Vol. 61, No. 7, 2715-2726, Jul. 2013.
doi:10.1109/TMTT.2013.2262687

6. Chandrasekaran, K. T., K. Agarwal, Nasimuddin, A. Alphones, R. Mittra, and M. F. Karim, "Compact dual-band metamaterial-based high-efficiency rectenna: An application for ambient electromagnetic energy harvesting," IEEE Antennas Propag. Mag., Vol. 62, No. 3, 18-29, Jun. 2020.
doi:10.1109/MAP.2020.2982091

7. Shen, S., C.-Y. Chiu, and R. D. Murch, "A dual-port triple-band L-probe microstrip patch rectenna for ambient RF energy harvesting," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 3071-3074, 2017.
doi:10.1109/LAWP.2017.2761397

8. Mansour, M. M. and H. Kanaya, "Compact and broadband RF rectifier with 1.5 octave bandwidth based on a simple pair of L-section matching network," IEEE Microw. Wirel. Compon. Lett., Vol. 28, No. 4, 335-337, Apr. 2018.
doi:10.1109/LMWC.2018.2808419

9. Daskalakis, S. N., A. Georgiadis, A. Collado, and M. M. Tentzeris, "An UHF rectifier with 100% bandwidth based on a ladder LC impedance matching network," 2017 12th European Microwave Integrated Circuits Conference (EuMIC), 411-414, Nuremberg, Oct. 2017.

10. Gorur, A. K. and C. Karpuz, "A novel microstrip triplexer based on meandered loop resonators," 2017 IEEE Asia Pacific Microwave Conference (APMC), 1242-1245, Kuala Lumpar, Nov. 2017.

11. Tang, C.-W. and C.-T. Tseng, "Design of a packaged microstrip triplexer with star-junction topology," 2012 42nd European Microwave Conference, 459-462, Amsterdam, Oct. 2012.

12. Chen, C.-F., T.-Y. Huang, T.-M. Shen, and R.-B. Wu, "A miniaturized microstrip common resonator triplexer without extra matching network," 2006 Asia-Pacific Microwave Conference, 1439-1442, Yokohama, Japan, Dec. 2006.

13. Elwi, T. A., Z. A. Abdul Hassain, and O. A. Tawfeeq, "Hilbert metamaterial printed antenna based on organic substrates for energy harvesting," IET Microw. Antennas Propag., Vol. 13, No. 12, 2185-2192, Oct. 2019.
doi:10.1049/iet-map.2018.5948

14. Elwi, T. A. and S. G. Abdulqader, "Further investigation on solant-rectenna-based flexible Hilbert-shaped metamaterials," IET Nanodielectrics, Vol. 3, No. 3, 88-93, Sep. 2020.
doi:10.1049/iet-nde.2020.0013

15. Elwi, T. A. and A. M. Al-Saegh, "Further realization of a flexible metamaterial-based antenna on indium nickel oxide polymerized palm fiber substrates for RF energy harvesting," Int. J. Microw. Wirel. Technol., Vol. 13, No. 1, 67-75, Feb. 2021.
doi:10.1017/S1759078720000665

16. Elwi, T. A., "Novel UWB printed metamaterial microstrip antenna based organic substrates for RF-energy harvesting applications," AEU - Int. J. Electron. Commun., Vol. 101, 44-53, Mar. 2019.
doi:10.1016/j.aeue.2019.01.026

17. Al-Dulaimi, Z., T. A. Elwi, D. C. Atilla, and C. Aydin, "Design of fractal based monopole antenna array with ultra-mutual coupling reduction for MIMO applications," 2018 18th Mediterranean Microwave Symposium (MMS), 39-42, Istanbul, Oct. 2018.

18. Pandey, R., A. K. Shankhwar, and A. Singh, "Design, analysis, and optimization of dual side printed multiband antenna for RF energy harvesting applications," Progress In Electromagnetics Research C, Vol. 102, 79-91, 2020.
doi:10.2528/PIERC20022901

19. Deng, P.-H., M.-I. Lai, S.-K. Jeng, and C. H. Chen, "Design of matching circuits for microstrip triplexers based on stepped-impedance resonators," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 12, 4185-4192, Dec. 2006.
doi:10.1109/TMTT.2006.886161

20. El-Tokhy, A., R. Wu, and Y. Wang, "Microstrip triplexer using a common triple-mode resonator," Microw. Opt. Technol. Lett., Vol. 60, No. 7, 1815-1820, Jul. 2018.
doi:10.1002/mop.31244

21. Hemour, S., et al., "Towards low-power high-efficiency RF and microwave energy harvesting," IEEE Trans. Microw. Theory Tech., Vol. 62, No. 4, 965-976, Apr. 2014.
doi:10.1109/TMTT.2014.2305134

22. Mattsson, M., C. I. Kolitsidas, and B. L. G. Jonsson, "Dual-band dual-polarized full-wave rectenna based on differential field sampling," IEEE Antennas Wirel. Propag. Lett., Vol. 17, No. 6, 956-959, Jun. 2018.
doi:10.1109/LAWP.2018.2825783

23. Khemar, A., A. Kacha, H. Takhedmit, and G. Abib, "Design and experiments of a dual-band rectenna for ambient RF energy harvesting in urban environments," IET Microw. Antennas Propag., Vol. 12, No. 1, 49-55, Jan. 2018.
doi:10.1049/iet-map.2016.1040

24. Boursianis, A. D., et al., "Triple-band single-layer rectenna for outdoor RF energy harvesting applications," Sensors, Vol. 21, No. 10, 3460, May 2021.
doi:10.3390/s21103460

25. Balanis, C. A., Antenna Theory: Analysis and Design, 4th Ed., Wiley, Hoboken, New Jersey, 2016.