Vol. 109
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-04-09
Improved Three Vector Model Predictive Torque Control of PMSM
By
Progress In Electromagnetics Research M, Vol. 109, 217-229, 2022
Abstract
To reduce the computational complexity of traditional model predictive torque control (MPTC) and improve the sensitivity of predictive control to disturbances, an improved three vector model predictive control strategy applied in permanent magnet synchronous motor (PMSM) is proposed. First, the principle of deadbeat synchronization between torque and flux linkage is adopted to reduce six candidate vectors in traditional torque prediction to two, and the cost function is designed to select the optimal voltage vector. In addition, disturbance observation compensation is introduced to compensate for the influence of load disturbance on the control performance of the predictive model. As experimental results show, the proposed three-vector model predictive torque control can obtain small torque ripple and current harmonics both in steady state and dynamic state.
Citation
Qianghui Xiao, Zhe Li, Bing Luo, Tingting Wang, Dingdou Wen, and Yang Zhang, "Improved Three Vector Model Predictive Torque Control of PMSM," Progress In Electromagnetics Research M, Vol. 109, 217-229, 2022.
doi:10.2528/PIERM21120403
References

1. Ding, X., J. Cheng, Z. Zhao, and P. Chi Kwong Luk, "A high-precision and high-efficiency PMSM driver based on power amplifiers and RTSPSs," IEEE Transactions on Power Electronics, Vol. 36, No. 9, 10470-10480, Sept. 2021, doi: 10.1109/TPEL.2021.3063312.
doi:10.1109/TPEL.2021.3063312

2. Wang, W., et al. "New three-phase current reconstruction for PMSM drive with hybrid space vector pulsewidth modulation technique," IEEE Transactions on Power Electronics, Vol. 36, No. 1, 662-673, Jan. 2021, doi: 10.1109/TPEL.2020.2997986.
doi:10.1109/TPEL.2020.2997986

3. Zhang, X. and Y. He, "Direct voltage-selection based model predictive direct speed control for PMSM drives without weighting factor," IEEE Transactions on Power Electronics, Vol. 34, No. 8, 7838-7851, Aug. 2019, doi: 10.1109/TPEL.2018.2880906.
doi:10.1109/TPEL.2018.2880906

4. Tong, W., S. Dai, S. Wu, and R. Tang, "Performance comparison between an amorphous metal PMSM and a silicon steel PMSM," IEEE Transactions on Magnetics, Vol. 55, No. 6, 1-5, Jun. 2019, Art No. 8102705, doi: 10.1109/TMAG.2019.2900531.

5. Sun, X., Z. Shi, G. Lei, Y. Guo, and J. Zhu, "Analysis and design optimization of a permanent magnet synchronous motor for a campus patrol electric vehicle," IEEE Transactions on Vehicular Technology, Vol. 68, No. 11, 10535-10544, Nov. 2019, doi: 10.1109/TVT.2019.2939794.
doi:10.1109/TVT.2019.2939794

6. Siami, M., D. A. Khaburi, A. Abbaszadeh, and J. Rodríguez, "Robustness improvement of predictive current control using prediction error correction for permanent-magnet synchronous machines," IEEE Transactions on Industrial Electronics, Vol. 63, No. 6, 3458-3466, Jun. 2016, doi: 10.1109/TIE.2016.2521734.
doi:10.1109/TIE.2016.2521734

7. Zhao, G., J. Feng, and Q. Sun, "The research of optimized torque control algorithm for PMSM based on grey prediction model," 2009 Sixth International Conference on Fuzzy Systems and Knowledge Discovery, 335-340, 2009, doi: 10.1109/FSKD.2009.588.
doi:10.1109/FSKD.2009.588

8. Chen, W. and D. Sun, "A simplified robust model predictive flux control of open-winding PMSM based on ESO," 2019 22nd International Conference on Electrical Machines and Systems (ICEMS), 1-6, 2019, doi: 10.1109/ICEMS.2019.8921676.

9. Zhang, X., K. Yan, and M. Cheng, "Two-stage series model predictive torque control for PMSM drives," IEEE Transactions on Power Electronics, Vol. 36, No. 11, 12910-12918, Nov. 2021, doi: 10.1109/TPEL.2021.3075711.
doi:10.1109/TPEL.2021.3075711

10. Ji, J., R. Xue, W. Zhao, T. Tao, and L. Huang, "Simplified three-vector-based model predictive thrust force control with cascaded optimization process for a double-side linear vernier permanent magnet motor," IEEE Transactions on Power Electronics, Vol. 35, No. 10, 10681-10689, Oct. 2020, doi: 10.1109/TPEL.2020.2976901.
doi:10.1109/TPEL.2020.2976901

11. Yan, L., M. Dou, Z. Hua, H. Zhang, and J. Yang, "Robustness improvement of FCS-MPTC for induction machine drives using disturbance feedforward compensation technique," IEEE Transactions on Power Electronics, Vol. 34, No. 3, 2874-2886, Mar. 2019, doi: 10.1109/TPEL.2018.2842743.
doi:10.1109/TPEL.2018.2842743

12. Wu, M., X. Sun, J. Zhu, G. Lei, and Y. Guo, "Improved model predictive torque control for PMSM drives based on duty cycle optimization," IEEE Transactions on Magnetics, Vol. 57, No. 2, 1-5, Feb. 2021, Art No. 8200505, doi: 10.1109/TMAG.2020.3008495.

13. Nikzad, M. R., B. Asaei, and S. O. Ahmadi, "Discrete Duty-Cycle-Control method for direct torque control of induction motor drives with model predictive solution," IEEE Transactions on Power Electronics, Vol. 33, No. 3, 2317-2329, Mar. 2018, doi: 10.1109/TPEL.2017.2690304.
doi:10.1109/TPEL.2017.2690304

14. Woldesemayat, M. L., H. Lee, S. Won, and K. Nam, "Modeling and veri cation of a six-phase interior permanent magnet synchronous motor," IEEE Transactions on Power Electronics, Vol. 33, No. 10, 8661-8671, Oct. 2018, doi: 10.1109/TPEL.2017.2782804.

15. Bhaumik, A. and S. Das, "Predictive torque control scheme without weighting factors for speed sensorless induction motor drive," 2021 1st International Conference on Power Electronics and Energy (ICPEE), 1-6, 2021, doi: 10.1109/ICPEE50452.2021.9358475.

16. Sun, X., et al. "MPTC for PMSMs of EVs with multi-motor driven system considering optimal energy allocation," IEEE Transactions on Magnetics, Vol. 55, No. 7, 1-6, Jul. 2019, Art No. 8104306, doi: 10.1109/TMAG.2019.2904289.
doi:10.1109/TMAG.2019.2904289

17. Chen, L., H. Xu, X. Sun, and Y. Cai, "Three-vector-based model predictive torque control for a permanent magnet synchronous motor of EVs," IEEE Transactions on Transportation Electrification, Vol. 7, No. 3, 1454-1465, Sept. 2021, doi: 10.1109/TTE.2021.3053256.
doi:10.1109/TTE.2021.3053256

18. Wang, B., Z. Dong, Y. Yu, G. Wang, and D. Xu, "Static-errorless deadbeat predictive current control using second-order sliding-mode disturbance observer for induction machine drives," IEEE Transactions on Power Electronics, Vol. 33, No. 3, 2395-2403, Mar. 2018, doi: 10.1109/TPEL.2017.2694019.
doi:10.1109/TPEL.2017.2694019

19. Wang, Y., S. Yang, and Z. Xie, "Extended state observer based current decoupling control for PMSM," 2019 22nd International Conference on Electrical Machines and Systems (ICEMS), 1-6, 2019, doi: 10.1109/ICEMS.2019.8921959.

20. Kim, H., J. Han, Y. Lee, J. Song, and K. Lee, "Torque predictive control of permanent-magnet synchronous motor using duty ratio prediction," 2013 IEEE International Symposium on Industrial Electronics, 1-5, 2013, doi: 10.1109/ISIE.2013.6563664.