1. Mumtaz, F., et al. "A design of taper-like etched multicore fiber refractive index-insensitive a temperature highly sensitive Mach-Zehnder interferometer," IEEE Sensors Journal, Vol. 20, No. 13, 7074-7081, 2020.
doi:10.1109/JSEN.2020.2978533 Google Scholar
2. Cheng, P., et al. "Refractive index interferometer based on SMF-MMF-TMCF-SMF structure with low temperature sensitivity," Optical Fiber Technology, Vol. 57, 102233, 2020.
doi:10.1016/j.yofte.2020.102233 Google Scholar
3. Mumtaz, F., Y. Dai, and M. A. Ashraf, "Inter-cross de-modulated refractive index and temperature sensor by an etched Multi-core fiber of a MZI structure," Journal of Lightwave Technology, Vol. 38, No. 24, 6948-6953, 2020.
doi:10.1109/JLT.2020.3014857 Google Scholar
4. Mumtaz, F., H. Lin, Y. Dai, W. Hu, M. A. Ashraf, L. G. Abbas, S. Cheng, and P. Cheng, "Simultaneous measurement of temperature and strain using multi-core fiber within-line cascaded symmetrical ellipsoidal fiber balls-based Mach-Zehnder interferometer structure," Progress In Electromagnetics Research C, Vol. 112, 21-34, 2021.
doi:10.2528/PIERC21021002 Google Scholar
5. Frazao, O., et al. "Simultaneous measurement of multiparameters using a Sagnac interferometer with polarization maintaining side-hole fiber," Applied Optics, Vol. 47, No. 27, 4841-4848, 2008.
doi:10.1364/AO.47.004841 Google Scholar
6. Bai, Y., Y. Miao, H. Zhang, and J. Yao, "Simultaneous measurement of temperature and relative humidity based on a microber sagnac loop and MoS2," Journal of Lightwave Technology, Vol. 38, No. 4, 840-845, 2020.
doi:10.1109/JLT.2019.2947644 Google Scholar
7. Cao, Y., H. Zhang, Y. Miao, Z. Ma, and B. Li, "Simultaneous measurement of temperature and refractive index based on microber Bragg Grating in Sagnac loop," Optical Fiber Technology, Vol. 47, 147-151, 2019.
doi:10.1016/j.yofte.2018.11.028 Google Scholar
8. Wang, G., Y. Lu, X. Yang, L. Duan, and J. Yao, "Square-lattice alcohol-lled photonic crystal fiber temperature sensor based on a Sagnac interferometer," Applied Optics, Vol. 58, No. 8, 2132-2136, 2019.
doi:10.1364/AO.58.002132 Google Scholar
9. Liu, Y., et al. "Fabrication of dual-parameter fiber-optic sensor by cascading FBG with FPI for simultaneous measurement of temperature and gas pressure," Optics Communications, Vol. 443, 166-171, 2019.
doi:10.1016/j.optcom.2019.03.034 Google Scholar
10. Liu, Y., et al. "Hollow-core fiber-based all-fiber FPI sensor for simultaneous measurement of air pressure and temperature," IEEE Sensors Journal, Vol. 19, No. 23, 11236-11241, 2019.
doi:10.1109/JSEN.2019.2934738 Google Scholar
11. Nan, J., D. Zhang, X. Wen, M. Li, H. Lv, and K. Su, "Elimination of thermal strain interference in mechanical strain measurement at high temperature using an EFPI-RFBG hybrid sensor with unlimited cavity length," IEEE Sensors Journal, Vol. 20, No. 10, 5270-5276, 2020.
doi:10.1109/JSEN.2020.2969431 Google Scholar
12. Abbas, L. G., F. Mumtaz, Y. Dai, A. Zhou, W. Hu, and M. A. Ashraf, "Highly sensitive polymer based Fabry-Perot interferometer for temperature sensing," Progress In Electromagnetics Research Letters, Vol. 97, 87-94, 2021.
doi:10.2528/PIERL21030702 Google Scholar
13. Del Carmen Alonso-Murias, M., J. S. Velazquez-Gonzalez, and D. Monzon-Hernandez, "SPR fiber tip sensor for the simultaneous measurement of refractive index, temperature, and level of a liquid," Journal of Lightwave Technology, Vol. 37, No. 18, 4808-4814, 2019.
doi:10.1109/JLT.2019.2921302 Google Scholar
14. Han, B., et al. "Simultaneous measurement of temperature and strain based on dual SPR effect in PCF," Optics Laser Technology, Vol. 113, 46-51, 2019.
doi:10.1016/j.optlastec.2018.12.010 Google Scholar
15. Velazquez-Gonzalez, J. S., D. Monzon-Hernandez, D. Moreno-Hernandez, F. Martnez-Pinon, and I. Hernandez-Romano, "Simultaneous measurement of refractive index and temperature using a SPR-based fiber optic sensor," Sensors Actuators B: Chemical, Vol. 242, 912-920, 2017.
doi:10.1016/j.snb.2016.09.164 Google Scholar
16. Zhang, R., S. Pu, and X. Li, "Gold-film-thickness dependent SPR refractive index and temperature sensing with hetero-core optical fiber structure," Sensors, Vol. 19, No. 19, 4345, 2019.
doi:10.3390/s19194345 Google Scholar
17. Lu, Y., M. Wang, C. Hao, Z. Zhao, and J. Yao, "Temperature sensing using photonic crystal fiber filled with silver nanowires and liquid," IEEE Photonics Journal, Vol. 6, No. 3, 1-7, 2014. Google Scholar
18. Xu, H., M. Hafezi, J. Fan, J. M. Taylor, G. F. Strouse, and Z. Ahmed, "Ultra-sensitive chip- based photonic temperature sensor using ring resonator structures," Optics Express, Vol. 22, No. 3, 3098-3104, 2014.
doi:10.1364/OE.22.003098 Google Scholar
19. Yu, J., S. Xu, Y. Jiang, H. Chen, and W. Feng, "Multi-parameter sensor based on the fiber Bragg grating combined with triangular-lattice four-core fiber," Optik, Vol. 208, 164094, 2020.
doi:10.1016/j.ijleo.2019.164094 Google Scholar
20. Yan, L. S., A. Yi, W. Pan, and B. Luo, "A simple demodulation method for FBG temperature sensors using a narrow band wavelength tunable DFB laser," IEEE Photonics Technology Letters, Vol. 22, No. 18, 1391-1393, 2010.
doi:10.1109/LPT.2010.2060478 Google Scholar
21. Rao, Y.-J., "In-fibre Bragg grating sensors," Measurement Science Technology, Vol. 8, No. 4, 355, 1997.
doi:10.1088/0957-0233/8/4/002 Google Scholar
22. Zheng, Z.-M., Y.-S. Yu, X.-Y. Zhang, Q. Guo, and H.-B. Sun, "Femtosecond laser inscribed small- period long-period fiber gratings with dual-parameter sensing," IEEE Sensors Journal, Vol. 18, No. 3, 1100-1103, 2017.
doi:10.1109/JSEN.2017.2761794 Google Scholar
23. Cao, X., D. Tian, Y. Liu, L. Zhang, and T. Wang, "Sensing characteristics of helical long-period gratings written in the double-clad fiber by CO2 laser," IEEE Sensors Journal, Vol. 18, No. 18, 7481-7485, 2018.
doi:10.1109/JSEN.2018.2855038 Google Scholar
24. Zhang, A. P., L.-Y. Shao, J.-F. Ding, and S. L. He, "Sandwiched long-period gratings for simultaneous measurement of refractive index and temperature," IEEE Photonics Technology Letters, Vol. 17, No. 11, 2397-2399, 2005.
doi:10.1109/LPT.2005.857621 Google Scholar
25. Zhou, J., et al. "Simultaneous measurement of strain and temperature by employing fiber Mach-Zehnder interferometer," Optics Express, Vol. 22, No. 2, 1680-1686, 2014.
doi:10.1364/OE.22.001680 Google Scholar
26. Jiang, L., J. Yang, S. Wang, B. Li, and M. Wang, "Fiber Mach-Zehnder interferometer based on microcavities for high-temperature sensing with high sensitivity," Optics Letters, Vol. 36, No. 19, 3753-3755, 2011.
doi:10.1364/OL.36.003753 Google Scholar
27. Alawsi, S. M. K. and M. A. Jabbar, "Refractive index and temperature sensor using HC-1550 infiltrating by different liquid crystal," Optics Photonics Journal, Vol. 8, No. 3, 29-39, 2018.
doi:10.4236/opj.2018.83004 Google Scholar
28. Zhou, Y., et al. "Simultaneous measurement of curvature and temperature based on PCF-based interferometer and fiber Bragg grating," Optics Communications, Vol. 284, No. 24, 5669-5672, 2011.
doi:10.1016/j.optcom.2011.08.048 Google Scholar
29. Wang, F., K. Pang, T. Ma, X. Wang, Y. J. O. Liu, and L. Technology, "Folded-tapered multimode- no-core fiber sensor for simultaneous measurement of refractive index and temperature," Optics Laser Technology, Vol. 130, 106333, 2020.
doi:10.1016/j.optlastec.2020.106333 Google Scholar
30. Zhang, P., et al. "Simplied hollow-core fiber-based Fabry-Perot interferometer with modified Vernier effect for highly sensitive high-temperature measurement," IEEE Photonics Journal, Vol. 7, No. 1, 1-10, 2015. Google Scholar
31. Tian, J., Y. Jiao, S. Ji, X. Dong, and Y. Yao, "Cascaded-cavity Fabry-Perot interferometer for simultaneous measurement of temperature and strain with cross-sensitivity compensation," Optics Communications, Vol. 412, 121-126, 2018.
doi:10.1016/j.optcom.2017.12.005 Google Scholar
32. Shao, L.-Y., et al. "Sensitivity-enhanced temperature sensor with cascaded fiber optic Sagnac interferometers based on Vernier-effect," Optics Communications, Vol. 336, 73-76, 2015.
doi:10.1016/j.optcom.2014.09.075 Google Scholar
33. Wang, G., B. Liao, Y. Cao, X. Feng, B.-O. Guan, and J. Yao, "Microwave photonic interrogation of a high-speed and high-resolution temperature sensor based on cascaded fiber-optic sagnac loops," Journal of Lightwave Technology, Vol. PP, No. 99, 1-1, 2020. Google Scholar
34. Yang, Y., et al. "Sensitivity-enhanced temperature sensor by hybrid cascaded configuration of a Sagnac loop and a FP cavity," Optics Express, Vol. 25, No. 26, 33290-33296, 2017.
doi:10.1364/OE.25.033290 Google Scholar
35. Wang, Z., L. Huang, C. Liu, H.Wang, S. Sun, and D. Yang, "Sensitivity-enhanced fiber temperature sensor based on vernier effect and dual in-line mach-zehnder interferometers," IEEE Sensors Journal, Vol. 19, No. 18, 7983-7987, 2019.
doi:10.1109/JSEN.2019.2916891 Google Scholar
36. Liao, H., et al. "Sensitivity amplication of fiber-optic in-line Mach-Zehnder Interferometer sensors with modified Vernier-effect," Optics Express, Vol. 25, No. 22, 26898-26909, 2017.
doi:10.1364/OE.25.026898 Google Scholar
37. Abbas, L. G. and H. Li, "Temperature sensing by hybrid interferometer based on Vernier like effect," Optical Fiber Technology, Vol. 64, 102538, 2021.
doi:10.1016/j.yofte.2021.102538 Google Scholar
38. Tan, X., Y. Geng, X. Li, Y. Deng, Z. Yin, and R. Gao, "UV-curable polymer microhemisphere-based fiber-optic Fabry-Perot interferometer for simultaneous measurement of refractive index and temperature," IEEE Photonics Journal, Vol. 6, No. 4, 1-8, 2014.
doi:10.1109/JPHOT.2014.2332460 Google Scholar
39. Cao, K., Y. Liu, and S. Qu, "Compact fiber biocompatible temperature sensor based on a hermetically-sealed liquid-lling structure," Optics Express, Vol. 25, No. 24, 29597-29604, 2017.
doi:10.1364/OE.25.029597 Google Scholar