Vol. 109
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-04-01
Design of Circular Polarization Multiplexing Beam Splitter Based on Transmission Metasurface
By
Progress In Electromagnetics Research M, Vol. 109, 125-136, 2022
Abstract
A circular polarization multiplexing metasurface beam splitter operating at 15 GHz with polarization conversion effect is proposed. The unit cell is formed by alternately stacking 4 layers of metal and 2 layers of dielectric substrates cascaded along the propagation direction, separated by air. The resonant phase of the unit cell can be changed by changing the size parameters of the two arms of the metal cross patch, and the phase coverage of nearly 360° can be achieved in the direction of the two orthogonal linear polarization components, while transmission coefficient is above 85%. The circular polarization geometric phase covering 360° can be achieved by rotating the metal patch. The polarization conversion of the circularly polarized wave can be realized by setting the phase difference of the two orthogonal linear polarization components to 180°, and the polarization conversion ratio (PCR) at the working frequency is greater than 90%. The simulation and test results show that when the circularly polarized electromagnetic wave is perpendicularly incident on the metasurface beam splitter, the transmitted wave is divided into two circularly polarized waves with different exit angles and orthogonal to the polarization direction of the incident wave. This work may provide new ideas for the integration and miniaturization of traditional beam splitting devices and have important application prospects in fields such as multiple input multiple output (MIMO) systems.
Citation
Honggang Hao, Yihao Tang, Sen Zheng, Xuehong Ran, and Wei Ruan, "Design of Circular Polarization Multiplexing Beam Splitter Based on Transmission Metasurface," Progress In Electromagnetics Research M, Vol. 109, 125-136, 2022.
doi:10.2528/PIERM22010408
References

1. Zhang, L., J. Guo, and T. Ding, "Ultrathin dual-mode vortex beam generator based on anisotropic coding metasurface," Scientific Reports, Vol. 11, No. 1, Art. No. 5766, Mar. 11, 2021.

2. Zhang, Z., Y. Zhang, T. Wu, S. Chen, W. Li, and J. Guan, "Broadband RCS reduction by a quaternionic metasurface," Materials, Vol. 14, No. 11, Art. No. 2787, Jun. 2021.

3. Ali, L., Q. Li, T. A. Khan, J. Yi, and X. Chen, "Wideband RCS reduction using coding diffusion metasurface," Materials, Vol. 12, No. 17, Art. No. 2708, Sep. 2019.
doi:10.3390/ma12172708

4. Yu, Y., F. Xiao, I. D. Rukhlenko, and W. Zhu, "High-efficiency ultra-thin polarization converter based on planar anisotropic transmissive metasurface," AEU-International Journal of Electronics and Communications, Vol. 118, Art. No. 153141, May 2020.

5. Fan, J. and Y. Cheng, "Broadband high-efficiency cross-polarization conversion and multi-functional wavefront manipulation based on chiral structure metasurface for terahertz wave," Journal of Physics D - Applied Physics, Vol. 53, No. 2, Art. No. 025109, Jan. 9, 2020.

6. Chen, L., Q. F. Nie, Y. Ruan, and H. Y. Cui, "Anisotropic metasurface with high-efficiency reflection and transmission for dual-polarization," Applied Physics A - Materials Science & Processing, Vol. 126, No. 9, Art. No. 758, Sep. 1, 2020.

7. Wu, L. W., H. F. Ma, R. Y. Wu, Q. Xiao, Y. Gou, M. Wang, Z. X. Wang, L. Bao, H. L. Wang, Y. M. Qing, and T. J. Cui, "Transmission-reflection controls and polarization controls of electromagnetic holograms by a reconfigurable anisotropic digital coding metasurface," Advanced Optical Materials, Vol. 8, No. 22, Art. No. 2001065, Nov. 2020.

8. Bao, Y., J. Yan, X. Yang, C.-W. Qiu, and B. Li, "Point-source geometric metasurface holography," Nano Letters, Vol. 21, No. 5, 2332-2338, Mar. 10, 2021.
doi:10.1021/acs.nanolett.0c04485

9. Yoon, G., D. Lee, K. Nam, and J. Rho, "Geometric metasurface enabling polarization independent beam splitting," Scientific Reports, Vol. 8, Art. No. 9468, Jun. 21, 2018.

10. Umul, Y. Z., "Diffraction of electromagnetic waves by a planar interface between perfectly absorbing and anomalously transmitting metasurface half-planes," Optik, Vol. 179, 173-181, 2019.
doi:10.1016/j.ijleo.2018.10.206

11. Maguid, E., I. Yulevich, M. Yannai, V. Kleiner, M. L. Brongersma, and E. Hasman, "Multifunctional interleaved geometric-phase dielectric metasurfaces," Light-Science & Applications, Vol. 6, Art. No. e17027, Aug. 11, 2017.

12. Liu, S., T. J. Cui, Q. Xu, D. Bao, L. L. Du, X. Wan, W. X. Tang, C. M. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. G. Han, W. L. Zhang, and Q. Cheng, "Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves," Light-Science & Applications, Vol. 5, Art. No. e16076, May 2016.

13. Lv, B. Y., C. M. Ouyang, H. F. Zhang, Q. Xu, Y. F. Li, X. Q. Zhang, Z. Tian, J. Q. Gu, L. Y. Liu, J. G. Han, and W. L. Zhang, "All-dielectric metasurface-based quad-beam splitter in the terahertz regime," IEEE Photonics Journal, Vol. 12, No. 5, Art. No. 4601410, Oct. 2020.

14. Ding, X., L. Zhang, K. Zhang, Q. Wu, and C.-W. Qiu, "Ultrathin metasurface based on phase discontinuity with maximal cross-polarization efficiency," IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IEEE MTT-S IMWS-AMP 2015), 266-268, Suzhou, China, 2015.

15. Ding, X. M., F. Monticone, K. Zhang, L. Zhang, D. L. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C.-W. Qiu, and A. Alu, "Ultrathin pancharatnam-berry metasurface with maximal cross-polarization efficiency," Advanced Materials, Vol. 27, No. 7, 1195-1200, Feb. 18, 2015.
doi:10.1002/adma.201405047

16. Mueller, J. P. B., N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, "Metasurface polarization optics: Independent phase control of arbitrary orthogonal states of polarization," Physical Review Letters, Vol. 118, No. 11, Art. No. 113901, Mar. 14, 2017.

17. Liu, M. Z., P. C. Huo, W. Q. Zhu, C. Zhang, S. Zhang, M. W. Song, S. Zhang, Q. W. Zhou, L. Chen, H. J. Lezec, A. Agrawal, Y. Q. Lu, and T. Xu, "Broadband generation of perfect Poincare beams via dielectric spin-multiplexed metasurface," Nature Communications, Vol. 12, No. 1, Art. No. 2230, Apr. 13, 2021.

18. Pang, H., H. Gao, Q. Deng, S. Yin, Q. Qiu, and C. Du, "Multi-focus plasmonic lens design based on holography," Optics Express, Vol. 21, No. 16, 18689-18696, Aug. 12, 2013.
doi:10.1364/OE.21.018689

19. Chen, M., D. P. Zhao, J. J. Cai, C. Y. Wang, X. F. Xiao, and L. Z. Chang, "All-dielectric metasurfaces for circularly polarized beam-splitters with high conversion efficiency and broad bandwidth," Optik, Vol. 165, 41-49, 2018.
doi:10.1016/j.ijleo.2018.01.059

20. Lee, W. S. L., S. Nirantar, D. Headland, M. Bhaskaran, S. Sriram, C. Fumeaux, and W. Withayachumnankul, "Broadband terahertz circular-polarization beam splitter," Advanced Optical Materials, Vol. 6, No. 3, 1700852, 2018.
doi:10.1002/adom.201700852

21. Liu, C. B., Y. Bai, Q. Zhao, Y. H. Yang, H. S. Chen, J. Zhou, and L. J. Qiao, "Fully controllable pancharatnam-berry metasurface array with high conversion efficiency and broad bandwidth," Scientific Reports, Vol. 6, 34819, 2016.
doi:10.1038/srep34819

22. Xie, X., M. B. Pu, K. P. Liu, X. L. Ma, X. Li, J. N. Yang, and X. G. Luo, "High-efficiency and tunable circular-polarization beam splitting with a liquid-filled all-metallic catenary meta-mirror," Advanced Materials Technologies, Vol. 4, No. 7, 1900334, 2019.
doi:10.1002/admt.201900334

23. Kuznetsov, S. A., V. A. Lenets, M. A. Tumashov, A. D. Sayanskiy, P. A. Lazorskiy, P. A. Belov, J. D. Baena, and S. B. Glybovski, "Self-complementary metasurfaces for designing terahertz deflecting circular-polarization beam splitters," Applied Physics Letters, Vol. 118, No. 13, 131601, 2021.
doi:10.1063/5.0042403

24. Yoon, G., D. Lee, K. Nam, and J. Rho, "Geometric metasurface enabling polarization independent beam splitting," Scientific Reports, Vol. 8, 9468, 2018.
doi:10.1038/s41598-018-27876-2