Vol. 112
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-07-24
Performance of Ultrathin Amorphous Silicon Solar Cells: an Influence of Plasmonic Effect
By
Progress In Electromagnetics Research M, Vol. 112, 29-39, 2022
Abstract
Compared to crystalline silicon solar cells, thin-film solar cells are inexpensive, but a weak absorption of sunlight at a longer wavelength is a significant issue. In this perspective, an efficient light trapping mechanism is needed to facilitate the light-guiding in enhancing light absorption. This paper presents a theoretical investigation of ultrathin amorphous silicon (a-Si) solar cells using the rigorous coupled-wave analysis (RCWA) method. We noticed broadband light absorption of the designed solar cell due to an efficient light trapping geometry. Our proposed design is composed of anti-reflection coating (ITO), an absorbing layer (a-Si), a back reflector (Ag-substrate), top-indium tin oxide (ITO), and bottom-silver (Ag) nanogratings. Using an Ag-back reflector with diffraction gratings demonstrated the improved diffraction and scattering of light, which enhanced light absorption within a 50 nm thick absorbing layer. Compared to the reference solar cell, the proposed ultrathin solar cell endorsed the enhanced photovoltaic conversion, i.e., 19% and 23%, corresponding to the transverse electric (TE) and magnetic (TM) polarization conditions. Furthermore, we explore the investigations of light absorption, current density, field distributions, reflection, transmission, and parasitic losses for the optimal design of ultrathin film (a-Si) solar cells.
Citation
Sigamani Saravanan Raghvendra Dubey , "Performance of Ultrathin Amorphous Silicon Solar Cells: an Influence of Plasmonic Effect," Progress In Electromagnetics Research M, Vol. 112, 29-39, 2022.
doi:10.2528/PIERM22020901
http://www.jpier.org/PIERM/pier.php?paper=22020901
References

1. Venkatesh, Y., R. S. Dubey, and B. Kumar, "Rapid and economic fabrication approach of dielectric reflectors for energy harvesting applications," Scientific Reports, Vol. 10, 15930-1-9, 2020.

2. Saravanan, S. and R. S. Dubey, "Study of ultrathin-film amorphous silicon solar cell performance using photonic and plasmonic nanostructure," International Journal of Energy Research, 1-9, 2021.

3. Saravanan, S. and R. S. Dubey, "Optical absorption enhancement in 40 nm ultrathin film silicon solar cells assisted by photonic and plasmonic modes," Optics Communications, Vol. 377, 65-69, 2016.
doi:10.1016/j.optcom.2016.05.028

4. Sidharthan, R. and V. M. Murukeshan, "Improved light absorption in thin film solar cell using combination of gap modes and grating back reflector," Thin Solid Films, 581-584, 2013.
doi:10.1016/j.tsf.2013.09.047

5. Olaimat, M. M., L. Yousefi, and O. M. Ramahi, "Using plasmonics and nanoparticles to enhance the efficiency of solar cells: Review of latest technologies," Journal of the Optical Society of America B, Vol. 38, No. 2, 638-651, 2021.
doi:10.1364/JOSAB.411712

6. Aly, A. M. A., M. Hussein, A. Yahia, M. F. O. Hameed, and S. S. A. Obayya, "Highly efficient SiO2 trapezoidal grating-based thin-film solar cell," Journal of the Optical Society of America B, Vol. 38, No. 3, 922-931, 2021.
doi:10.1364/JOSAB.414777

7. Du, J., Y. An, C. Zhu, X. Li, and D. Ma, "Photonic design and electrical evaluation of dual-functional solar cells for energy conversion and display application," Nanoscale Research Letters, Vol. 14, 1-9, 2019.

8. Subhan, F. E., A. D. Khan, F. E. Hilal, A. D. Khan, S. D. Khan, R. Ullah, M. Imran, and M. Noman, "Efficient broadband light absorption in thin-film a-Si solar cell based on double sided hybrid bi-metallic nanogratings," RSC Advances, Vol. 10, 11836-11842, 2020.
doi:10.1039/C9RA10232A

9. Amalathas, A. P. and M. M. Alkaisi, "Nanostructures for light trapping in thin film solar cells," Micromachines, Vol. 10, No. 619, 1-18, 2019.

10. Shi, Y., X. Wang, W. Liu, T. Yang, and F. Yang, "Hybrid light trapping structures in thin film silicon solar cells," Journal of Optics, Vol. 16, 075706-1-7, 2014.

11. Chao, C. C., C. M. Wang, and J. Y. Chang, "Spatial distribution of absorption in plasmonic thin film solar cells," Optics Express, Vol. 18, No. 11, 11763-11771, 2010.
doi:10.1364/OE.18.011763

12. Duhring, M. B., N. A. Mortensen, and O. Sigmund, "Plasmonic versus dielectric enhancement in thin film solar cells," Applied Physics Letters, Vol. 100, 211914-1-4, 2012.

13. Lai, F. I., J. F. Yang, Y. C. Hsu, and S. Y. Kuo, "Improvement of amorphous silicon thin-film photovoltaic cells with zinc oxide nanorods," Crystals, Vol. 10, 1124-1-10, 2020.

14. Mutitu, J. G., S. Shi, A. Barnett, and D. W. Prather, "Hybrid dielectric-metallic back reflector for amorphous silicon solar cells," Energies, Vol. 3, 1914-1933, 2010.
doi:10.3390/en3121914

15. Abass, A., K. Q. Le, A. Alu, M. Burgelman, and B. Maes, "Dual interface gratings for broadband absorption enhancement in thin film solar cells," Physics Review B, Vol. 85, 115449-1-7, 2012.
doi:10.1103/PhysRevB.85.115449

16. Kumawat, U. K., K. Kumar, S. Mishra, and A. Dhawan, "Plasmonic enhanced microcrystalline silicon solar cells," Journal of the Optical Society of America B, Vol. 37, No. 2, 495-504, 2020.
doi:10.1364/JOSAB.378946

17. Moharam, M. G. and T. K. Gaylord, "Three-dimensional vector coupled-wave analysis of planar-grating diffraction," Journal of the Optical Society of America, Vol. 73, No. 9, 1105, 1983.
doi:10.1364/JOSA.73.001105

18. Guo, X., J. Liu, and S. Zhang, "Design of light trapping structures for ultrathin solar cells," Photonics and Optoelectronics (P&O), Vol. 3, 66-69, 2014.
doi:10.14355/jpo.2014.03.008

19. Ferry, V. E., J. N. Munday, and H. A. Atwater, "Design considerations for plasmonic photovoltaics," Advanced Materials (Deerfield Beach Fla.), Vol. 22, No. 43, 4794-4808, 2010.
doi:10.1002/adma.201000488

20. Pala, R. A., J. White, E. Barnard, J. Liu, and M. L. Brongersma, "Design of plasmonic thin-film solar cells with broadband absorption enhancements," Advanced Materials (Deerfield Beach Fla.), Vol. 21, No. 34, 3504-3509, 2009.
doi:10.1002/adma.200900331

21. Panoiu, N. C., R. M. Osgood, and Jr., "Enhanced optical absorption for photovoltaics via excitation of waveguide and plasmon-polariton modes," Optics Letters, Vol. 32, No. 19, 2825-2827, 2007.
doi:10.1364/OL.32.002825

22. Pahud, C., V. Savu, M. Klein, O. Vazquez-Mena, F.-J. Haug, J. Brugger, and C. Ballif, "Stencil-nanopatterned back reflectors for thin-film amorphous silicon n-i-p solar cells," IEEE Journal of Photovoltaics, Vol. 3, No. 1, 22-26, 2013.
doi:10.1109/JPHOTOV.2012.2213583

23. Zilio, P., D. Sammito, G. Zacco, M. Mazzeo, G. Gigli, and F. Romanato, "Light absorption enhancement in heterostructure organic solar cells through the integration of 1-D plasmonic gratings," Optics Express, Vol. 20, No. S4, A476-A488, 2012.
doi:10.1364/OE.20.00A476

24. Dunbar, R. B., T. P. Fadler, and L. Schmidt-Mende, "Highly absorbing solar cells --- A survey of plasmonic nanostructures," Optics Express, Vol. 20, No. S2, A177-A189, 2012.
doi:10.1364/OE.20.00A177

25. Lee, S. and S. Kim, "Optical absorption characteristic in thin a-Si film embedded between an ultrathin metal grating and a metal reflector," IEEE Photonics, Vol. 5, No. 5, 2013.

26. Villa, F., T. Lopez-Rios, and L. E. Regalado, "Electromagnetic modes in metal-insulator-metal structures," Physics Review B, Condensed Matter, Vol. 63, No. 16, 165103-1-165103-4, 2001.
doi:10.1103/PhysRevB.63.165103

27. Vuong, L. T., G. Kozyreff, R. Betancur, and J. Martorell, "Cavity-controlled radiative recombination of excitons in thin-film solar cells," Applied Physics Letters, Vol. 95, No. 23, 233106-1-233106-3, 2009.
doi:10.1063/1.3262954

28. Chen, K., N. Zheng, S. Wu, J. He, Y. Yu, and H. Zheng, "Effective light trapping in c-Si thin-film solar cells with a dual-layer split grating," Appl. Opt., Vol. 60, No. 33, 10312-10321, 2021.
doi:10.1364/AO.443307

29. Tennyson, E. M., K. Frohna, W. K. Drake, F. Sahli, T. C.-J. Yang, F. Fu, J. Werner, C. Chosy, A. R. Bowman, T. A. S. Doherty, Q. Jeangros, C. Ballif, and S. D. Stranks, "Multimodel microscale imaging of textured perovskite-silicon tandem solar cells," ACS Energy Letters, Vol. 6, No. 6, 2293-2304, 2021.
doi:10.1021/acsenergylett.1c00568

30. Dubey, R. S. and S. Saravanan, "Impact of distributed Bragg's reflectors and nanogratings in thin film silicon solar cells," Nanosyst: Phys. Chem. Math., Vol. 13, No. 2, 223-229, 2022.
doi:10.17586/2220-8054-2022-13-2-220-226

31. Wang, W., S. Wu, K. Reinhardt, Y. Lu, and S. Chen, "Broadband light absorption enhancement in thin-film silicon solar cells," Nano Letters, Vol. 10, No. 6, 2012-2018, 2010.
doi:10.1021/nl904057p

32. Khaleque, T. and R. Magnusson, "Light management through guided-mode resonances in thin-film silicon solar cells," Journal of Nanophotonics, Vol. 8, 083995-1-083995-13, 2014.

33. Barnes, W. L., A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature, Vol. 424, No. 6950, 824-830, 2003.
doi:10.1038/nature01937

34. Zhu, L.-H., M.-R. Shao, R.-W. Peng, R.-H. Fan, X.-R. Huang, and M. Wang, "Broadband absorption and efficiency enhancement of an ultra-thin silicon solar cell with a plasmonic fractal," Optics Express, Vol. 21, No. S3, A313-A323, 2013.
doi:10.1364/OE.21.00A313

35. Lee, S., S. J. In, D. R. Mason, and N. Park, "Incorporation of nanovoids into metallic gratings for broadband plasmonic organic solar cells," Optics Express, Vol. 21, No. 4, 4055-4060, 2013.
doi:10.1364/OE.21.004055