1. Hall, P. S. and v, Antennas and Propagation for Body-centric Wireless Communications, 2nd Edition, Artech House, Inc., USA, 2012.
2. Mahfuz, M. M. H., et al. "Wearable textile patch antenna: Challenges and future directions," IEEE Access, Vol. 10, 38406-38427, 2022, doi: 10.1109/ACCESS.2022.3161564.
doi:10.1109/ACCESS.2022.3161564 Google Scholar
3. Shakib, M. N., M. Moghavvemi, and W. N. L. Binti Wan Mahadi, "Design of a tri-band off-body antenna for WBAN communication," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 210-213, 2017, doi: 10.1109/LAWP.2016.2569819.
doi:10.1109/LAWP.2016.2569819 Google Scholar
4. El Gharbi, M., R. Fernández-García, S. Ahyoud, and I. Gil, "A review of exible wearable antenna sensors: Design, fabrication methods, and applications," Materials (Basel), Vol. 13, No. 17, 2020, doi: 10.3390/ma13173781.
doi:10.3390/ma13173781 Google Scholar
5. Wang, J., et al. "Metantenna: When metasurface meets antenna again," IEEE Trans. Antennas Propag., Vol. 68, No. 3, 1332-1347, 2020.
doi:10.1109/TAP.2020.2969246 Google Scholar
6. Zhang, K., P. J. Soh, and S. Yan, "Meta-wearable antennas --- A review of metamaterial based antennas in wireless body area networks," Materials (Basel), Vol. 14, No. 1, 149, 2021.
doi:10.3390/ma14010149 Google Scholar
7. Dewan, R., et al. "Artificial magnetic conductor for various antenna applications: An overview," Int. J. RF Microw. Comput. Eng., Vol. 27, No. 6, e21105, 2017.
doi:10.1002/mmce.21105 Google Scholar
8. Balanis, C. A., M. A. Amiri, A. Y. Modi, S. Pandi, and C. R. Birtcher, "Applications of AMC-based impedance surfaces," EPJ Appl. Metamat., Vol. 5, 3, 2018, doi: 10.1051/epjam/2017010.
doi:10.1051/epjam/2017010 Google Scholar
9. Zhang, K., G. A. E. Vandenbosch, and S. Yan, "A novel design approach for compact wearable antennas based on metasurfaces," IEEE Trans. Biomed. Circuits Syst., Vol. 14, No. 4, 918-927, 2020, doi: 10.1109/TBCAS.2020.3010259.
doi:10.1109/TBCAS.2020.3010259 Google Scholar
10. Alemaryeen, A. and S. Noghanian, "Crumpling effects and specific absorption rates of flexible AMC integrated antennas," IET Microwaves, Antennas & Propag., Vol. 12, No. 4, 627-635, 2018, doi: https://doi.org/10.1049/iet-map.2017.0652.
doi:10.1049/iet-map.2017.0652 Google Scholar
11. Hazarika, B., B. Basu, and A. Nandi, "An artificial magnetic conductor-backed monopole antenna to obtain high gain, conformability, and lower specific absorption rate for WBAN applications," Int. J. RF Microw. Comput. Eng., Vol. 30, No. 12, e22441, 2020, doi: https://doi.org/10.1002/mmce.22441. Google Scholar
12. Arif, A., M. Zubair, M. Ali, M. U. Khan, and M. Q. Mehmood, "A compact, low-profile fractal antenna for wearable on-body WBAN applications," IEEE Antennas Wirel. Propag. Lett., Vol. 18, No. 5, 981-985, 2019, doi: 10.1109/LAWP.2019.2906829.
doi:10.1109/LAWP.2019.2906829 Google Scholar
13. Jiang, Z. H., D. E. Brocker, P. E. Sieber, and D. H. Werner, "A compact, low-profile metasurface-enabled antenna for wearable medical body-area network devices," IEEE Trans. Antennas Propag., Vol. 62, No. 8, 4021-4030, 2014, doi: 10.1109/TAP.2014.2327650.
doi:10.1109/TAP.2014.2327650 Google Scholar
14. Kokolia, M. and Z. Raida, "Textile-integrated microwave components based on artificial magnetic conductor," Int. J. Numer. Model. Electron. Networks, Devices Fields, Vol. 34, No. 4, e2864, 2021, doi: https://doi.org/10.1002/jnm.2864.
doi:10.1002/jnm.2864 Google Scholar
15. El Atrash, M., M. A. Abdalla, and H. M. Elhennawy, "A wearable dual-band low profile high gain low SAR antenna AMC-backed for WBAN applications," IEEE Trans. Antennas Propag., Vol. 67, No. 10, 6378-6388, 2019.
doi:10.1109/TAP.2019.2923058 Google Scholar
16. Yang, H., X. Liu, Y. Fan, and L. Xiong, "Dual-band textile antenna with dual circular polarizations using polarization rotation AMC for off-body communications," IEEE Trans. Antennas Propag., 1, 2022, doi: 10.1109/TAP.2021.3138504. Google Scholar
17. Ramli, M. N., P. J. Soh, M. F. Jamlos, H. Lago, N. M. Aziz, and A. A. Al-Hadi, "Dual-band wearable uidic antenna with metasurface embedded in a PDMS substrate," Appl. Phys. A, Vol. 123, No. 2, 149, 2017.
doi:10.1007/s00339-017-0754-3 Google Scholar
18. Paracha, K. N., et al. "A low profile, dual-band, dual polarized antenna for indoor/outdoor wearable application," IEEE Access, Vol. 7, 33277-33288, 2019.
doi:10.1109/ACCESS.2019.2894330 Google Scholar
19. Dey, A. B., D. Mitra, and W. Arif, "Design of CPW fed multiband antenna for wearable wireless body area network applications," Int. J. RF Microw. Comput. Eng., Oct. 2020, doi: 10.1002/mmce.22459. Google Scholar
20. Velan, S., et al. "Dual-band EBG integrated monopole antenna deploying fractal geometry for wearable applications," IEEE Antennas Wirel. Propag. Lett., Vol. 14, 249-252, 2015, doi: 10.1109/LAWP.2014.2360710.
doi:10.1109/LAWP.2014.2360710 Google Scholar
21. Abirami, B. S. and E. F. Sundarsingh, "EBG-backed exible printed Yagi-Uda antenna for on- body communication," IEEE Trans. Antennas Propag., Vol. 65, No. 7, 3762-3765, 2017, doi: 10.1109/TAP.2017.2705224.
doi:10.1109/TAP.2017.2705224 Google Scholar
22. Zu, H., B. Wu, P. Yang, W. Li, and J. Liu, "Wideband and high-gain wearable antenna array with specific absorption rate suppression," Electronics, Vol. 10, No. 17, 2021, doi: 10.3390/electronics10172056.
doi:10.3390/electronics10172056 Google Scholar
23. Cheng, Y.-F., X. Ding, B.-Z. Wang, and W. Shao, "An azimuth-pattern-reconfigurable antenna with enhanced gain and front-to-back ratio," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 2303-2306, 2017, doi: 10.1109/LAWP.2017.2715373.
doi:10.1109/LAWP.2017.2715373 Google Scholar
24. Sarkar, P. P., "Compact ultra-wideband antenna: Improvement of gain and FBR across the entire bandwidth using FSS," IET Microwaves, Antennas Propag., Vol. 14, No. 1, 66-74(8), Jan. 2020.
doi:10.1049/iet-map.2019.0536 Google Scholar
25. Kumar, C. and D. Guha, "Mitigating backside radiation issues of defected ground structure integrated microstrip patches," IEEE Antennas Wirel. Propag. Lett., Vol. 19, No. 12, 2502-2506, 2020, doi: 10.1109/LAWP.2020.3037219.
doi:10.1109/LAWP.2020.3037219 Google Scholar
26. Xu, Y., N.-W. Liu, and L. Zhu, "Proposal and design of an end-fire slot antenna with low back-lobe and improved front-to-back ratio," Int. J. RF Microw. Comput. Eng., Vol. 31, No. 2, e22508, 2021. Google Scholar
27. Alam, M., M. Siddique, B. K. Kanaujia, M. T. Beg, S. Kumar, and K. Rambabu, "Meta-surface enabled hepta-band compact antenna for wearable applications," IET Microwaves, Antennas & Propag., Vol. 13, No. 13, 2372-2379, 2019, doi: https://doi.org/10.1049/iet-map.2018.6212.
doi:10.1049/iet-map.2018.6212 Google Scholar
28. Yu, C., S. Yang, Y. Chen, and D. Zeng, "Radiation enhancement for a triband microstrip antenna using an AMC reflector characterize with three zdero-phases in reflection coefficient," Journal of Electromagnetic Waves and Applications, Vol. 33, No. 14, 1846-1859, 2019, doi: 10.1080/09205071.2019.1645743.
doi:10.1080/09205071.2019.1645743 Google Scholar
29. Yalduz, H., T. E. Tabaru, V. T. Kilic, and M. Turkmen, "Design and analysis of low profile and low SAR full-textile UWB wearable antenna with metamaterial for WBAN applications," AEU --- Int. J. Electron. Commun., Vol. 126, 153465, 2020, doi: https://doi.org/10.1016/j.aeue.2020.153465.
doi:10.1016/j.aeue.2020.153465 Google Scholar
30. Gong, Y., S. Yang, B. Li, Y. Chen, F. Tong, and C. Yu, "Multi-band and high gain antenna using AMC ground characterized with four zero-phases of reflection coefficient," IEEE Access, Vol. 8, 171457-171468, 2020.
doi:10.1109/ACCESS.2020.3024982 Google Scholar
31. Ghosh, A., V. Kumar, G. Sen, and S. Das, "Gain enhancement of triple-band patch antenna by using triple-band artificial magnetic conductor," IET Microwaves, Antennas Propag., Vol. 12, No. 8, 1400-1406, 2018.
doi:10.1049/iet-map.2017.0815 Google Scholar
32. Lai, J., J. Wang, W. Sun, R. Zhao, and H. Zeng, "A low profile artificial magnetic conductor based tri-band antenna for wearable applications," Microw. Opt. Technol. Lett., Vol. 64, No. 1, 123-129, 2022, doi: https://doi.org/10.1002/mop.33040.
doi:10.1002/mop.33040 Google Scholar
33. "Shielding and conductive fabrics,", Less EMF, 2015.
doi:10.1002/mop.33040 Google Scholar
34. Fields, R. E., "Evaluating compliance with FCC guidelines for human exposure to radiofrequency electromagnetic fields," OET Bull., Vol. 65, No. 10, 1997. Google Scholar
35. Sharma, P. K., N. Gupta, and P. I. Dankov, "Characterization of polydimethylsiloxane (PDMS) as a wearable antenna substrate using resonance and planar structure methods," AEU --- Int. J. Electron. Commun., Vol. 127, 153455, 2020, doi: https://doi.org/10.1016/j.aeue.2020.153455.
doi:10.1016/j.aeue.2020.153455 Google Scholar
36. Langley, R. J. and E. A. Parker, "Double-square frequency-selective surfaces and their equivalent circuit," Electron. Lett., Vol. 19, No. 17, 675-677, 1983.
doi:10.1049/el:19830460 Google Scholar