Vol. 121
Latest Volume
All Volumes
PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-06-14
A Circularly Polarized Quad-Band Wearable Textile Antenna Integrated with Triple Band AMC Reflector for WBAN Applications
By
Progress In Electromagnetics Research C, Vol. 121, 1-18, 2022
Abstract
A quad-band (3.5, 5.8, 7.5 & 8.08 GHz), low profile, low Specific Absorption rate (SAR), and circularly polarized (3.5, 7.5, 8.08 GHz) wearable textile antenna (50x30x1 mm3) integrated with a triple-band zero reflection phase Artificial Magnetic Conductor (AMC) surface is presented. The designed standalone antenna exhibits low SAR with 10 mm separation for 0.5 W input power and radiation performance with a gain of >5 dB and Front to Back Ratio (FBR) (<10 dB) at all operating frequencies. The AMC unit-cell is synthesized using PDMS (Polydimethylsiloxane) with footprint of 20×20×1 mm3 to operating at 3.5, 7.5, and 8.08 GHz respectively with in-phase reflection. The designed 3×3 AMC reflector is integrated to improve the radiation performance of the designed antenna with gain to >7 dB, FBR to >10 dB, and withstanding low SAR at increased input power compatibility at separation (d=3 mm) from the body surface. The designed AMC transforms the radiation pattern from omnidirectional to directional with improved FBR, reduced back radiation with low SAR (<0.504 W/kg). The proposed AMC integrated antenna also providing mechanical feasibility in terms of handling the frequency detuning due to bending and the human-body loading feature makes it suitable for wireless body area networks (WBAN) applications.
Citation
Anil Badisa Boddapati Taraka Phani Madhav Kantamaneni Srilatha Myla Chimpiri Rao Sudipta Das , "A Circularly Polarized Quad-Band Wearable Textile Antenna Integrated with Triple Band AMC Reflector for WBAN Applications," Progress In Electromagnetics Research C, Vol. 121, 1-18, 2022.
doi:10.2528/PIERC22022503
http://www.jpier.org/PIERC/pier.php?paper=22022503
References

1. Hall, P. S. and v, Antennas and Propagation for Body-centric Wireless Communications, 2nd Edition, Artech House, Inc., USA, 2012.

2. Mahfuz, M. M. H., et al., "Wearable textile patch antenna: Challenges and future directions," IEEE Access, Vol. 10, 38406-38427, 2022, doi: 10.1109/ACCESS.2022.3161564.
doi:10.1109/ACCESS.2022.3161564

3. Shakib, M. N., M. Moghavvemi, and W. N. L. Binti Wan Mahadi, "Design of a tri-band off-body antenna for WBAN communication," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 210-213, 2017, doi: 10.1109/LAWP.2016.2569819.
doi:10.1109/LAWP.2016.2569819

4. El Gharbi, M., R. Fernández-García, S. Ahyoud, and I. Gil, "A review of exible wearable antenna sensors: Design, fabrication methods, and applications," Materials (Basel), Vol. 13, No. 17, 2020, doi: 10.3390/ma13173781.
doi:10.3390/ma13173781

5. Wang, J., et al., "Metantenna: When metasurface meets antenna again," IEEE Trans. Antennas Propag., Vol. 68, No. 3, 1332-1347, 2020.
doi:10.1109/TAP.2020.2969246

6. Zhang, K., P. J. Soh, and S. Yan, "Meta-wearable antennas --- A review of metamaterial based antennas in wireless body area networks," Materials (Basel), Vol. 14, No. 1, 149, 2021.
doi:10.3390/ma14010149

7. Dewan, R., et al., "Artificial magnetic conductor for various antenna applications: An overview," Int. J. RF Microw. Comput. Eng., Vol. 27, No. 6, e21105, 2017.
doi:10.1002/mmce.21105

8. Balanis, C. A., M. A. Amiri, A. Y. Modi, S. Pandi, and C. R. Birtcher, "Applications of AMC-based impedance surfaces," EPJ Appl. Metamat., Vol. 5, 3, 2018, doi: 10.1051/epjam/2017010.
doi:10.1051/epjam/2017010

9. Zhang, K., G. A. E. Vandenbosch, and S. Yan, "A novel design approach for compact wearable antennas based on metasurfaces," IEEE Trans. Biomed. Circuits Syst., Vol. 14, No. 4, 918-927, 2020, doi: 10.1109/TBCAS.2020.3010259.
doi:10.1109/TBCAS.2020.3010259

10. Alemaryeen, A. and S. Noghanian, "Crumpling effects and specific absorption rates of flexible AMC integrated antennas," IET Microwaves, Antennas & Propag., Vol. 12, No. 4, 627-635, 2018, doi: https://doi.org/10.1049/iet-map.2017.0652.
doi:10.1049/iet-map.2017.0652

11. Hazarika, B., B. Basu, and A. Nandi, "An artificial magnetic conductor-backed monopole antenna to obtain high gain, conformability, and lower specific absorption rate for WBAN applications," Int. J. RF Microw. Comput. Eng., Vol. 30, No. 12, e22441, 2020, doi: https://doi.org/10.1002/mmce.22441.

12. Arif, A., M. Zubair, M. Ali, M. U. Khan, and M. Q. Mehmood, "A compact, low-profile fractal antenna for wearable on-body WBAN applications," IEEE Antennas Wirel. Propag. Lett., Vol. 18, No. 5, 981-985, 2019, doi: 10.1109/LAWP.2019.2906829.
doi:10.1109/LAWP.2019.2906829

13. Jiang, Z. H., D. E. Brocker, P. E. Sieber, and D. H. Werner, "A compact, low-profile metasurface-enabled antenna for wearable medical body-area network devices," IEEE Trans. Antennas Propag., Vol. 62, No. 8, 4021-4030, 2014, doi: 10.1109/TAP.2014.2327650.
doi:10.1109/TAP.2014.2327650

14. Kokolia, M. and Z. Raida, "Textile-integrated microwave components based on artificial magnetic conductor," Int. J. Numer. Model. Electron. Networks, Devices Fields, Vol. 34, No. 4, e2864, 2021, doi: https://doi.org/10.1002/jnm.2864.
doi:10.1002/jnm.2864

15. El Atrash, M., M. A. Abdalla, and H. M. Elhennawy, "A wearable dual-band low profile high gain low SAR antenna AMC-backed for WBAN applications," IEEE Trans. Antennas Propag., Vol. 67, No. 10, 6378-6388, 2019.
doi:10.1109/TAP.2019.2923058

16. Yang, H., X. Liu, Y. Fan, and L. Xiong, "Dual-band textile antenna with dual circular polarizations using polarization rotation AMC for off-body communications," IEEE Trans. Antennas Propag., 1, 2022, doi: 10.1109/TAP.2021.3138504.

17. Ramli, M. N., P. J. Soh, M. F. Jamlos, H. Lago, N. M. Aziz, and A. A. Al-Hadi, "Dual-band wearable uidic antenna with metasurface embedded in a PDMS substrate," Appl. Phys. A, Vol. 123, No. 2, 149, 2017.
doi:10.1007/s00339-017-0754-3

18. Paracha, K. N., et al., "A low profile, dual-band, dual polarized antenna for indoor/outdoor wearable application," IEEE Access, Vol. 7, 33277-33288, 2019.
doi:10.1109/ACCESS.2019.2894330

19. Dey, A. B., D. Mitra, and W. Arif, "Design of CPW fed multiband antenna for wearable wireless body area network applications," Int. J. RF Microw. Comput. Eng., Oct. 2020, doi: 10.1002/mmce.22459.

20. Velan, S., et al., "Dual-band EBG integrated monopole antenna deploying fractal geometry for wearable applications," IEEE Antennas Wirel. Propag. Lett., Vol. 14, 249-252, 2015, doi: 10.1109/LAWP.2014.2360710.
doi:10.1109/LAWP.2014.2360710

21. Abirami, B. S. and E. F. Sundarsingh, "EBG-backed exible printed Yagi-Uda antenna for on- body communication," IEEE Trans. Antennas Propag., Vol. 65, No. 7, 3762-3765, 2017, doi: 10.1109/TAP.2017.2705224.
doi:10.1109/TAP.2017.2705224

22. Zu, H., B. Wu, P. Yang, W. Li, and J. Liu, "Wideband and high-gain wearable antenna array with specific absorption rate suppression," Electronics, Vol. 10, No. 17, 2021, doi: 10.3390/electronics10172056.
doi:10.3390/electronics10172056

23. Cheng, Y.-F., X. Ding, B.-Z. Wang, and W. Shao, "An azimuth-pattern-reconfigurable antenna with enhanced gain and front-to-back ratio," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 2303-2306, 2017, doi: 10.1109/LAWP.2017.2715373.
doi:10.1109/LAWP.2017.2715373

24. Sarkar, P. P., "Compact ultra-wideband antenna: Improvement of gain and FBR across the entire bandwidth using FSS," IET Microwaves, Antennas Propag., Vol. 14, No. 1, 66-74(8), Jan. 2020.
doi:10.1049/iet-map.2019.0536

25. Kumar, C. and D. Guha, "Mitigating backside radiation issues of defected ground structure integrated microstrip patches," IEEE Antennas Wirel. Propag. Lett., Vol. 19, No. 12, 2502-2506, 2020, doi: 10.1109/LAWP.2020.3037219.
doi:10.1109/LAWP.2020.3037219

26. Xu, Y., N.-W. Liu, and L. Zhu, "Proposal and design of an end-fire slot antenna with low back-lobe and improved front-to-back ratio," Int. J. RF Microw. Comput. Eng., Vol. 31, No. 2, e22508, 2021.

27. Alam, M., M. Siddique, B. K. Kanaujia, M. T. Beg, S. Kumar, and K. Rambabu, "Meta-surface enabled hepta-band compact antenna for wearable applications," IET Microwaves, Antennas & Propag., Vol. 13, No. 13, 2372-2379, 2019, doi: https://doi.org/10.1049/iet-map.2018.6212.
doi:10.1049/iet-map.2018.6212

28. Yu, C., S. Yang, Y. Chen, and D. Zeng, "Radiation enhancement for a triband microstrip antenna using an AMC reflector characterize with three zdero-phases in reflection coefficient," Journal of Electromagnetic Waves and Applications, Vol. 33, No. 14, 1846-1859, 2019, doi: 10.1080/09205071.2019.1645743.
doi:10.1080/09205071.2019.1645743

29. Yalduz, H., T. E. Tabaru, V. T. Kilic, and M. Turkmen, "Design and analysis of low profile and low SAR full-textile UWB wearable antenna with metamaterial for WBAN applications," AEU --- Int. J. Electron. Commun., Vol. 126, 153465, 2020, doi: https://doi.org/10.1016/j.aeue.2020.153465.
doi:10.1016/j.aeue.2020.153465

30. Gong, Y., S. Yang, B. Li, Y. Chen, F. Tong, and C. Yu, "Multi-band and high gain antenna using AMC ground characterized with four zero-phases of reflection coefficient," IEEE Access, Vol. 8, 171457-171468, 2020.
doi:10.1109/ACCESS.2020.3024982

31. Ghosh, A., V. Kumar, G. Sen, and S. Das, "Gain enhancement of triple-band patch antenna by using triple-band artificial magnetic conductor," IET Microwaves, Antennas Propag., Vol. 12, No. 8, 1400-1406, 2018.
doi:10.1049/iet-map.2017.0815

32. Lai, J., J. Wang, W. Sun, R. Zhao, and H. Zeng, "A low profile artificial magnetic conductor based tri-band antenna for wearable applications," Microw. Opt. Technol. Lett., Vol. 64, No. 1, 123-129, 2022, doi: https://doi.org/10.1002/mop.33040.
doi:10.1002/mop.33040

33., "Shielding and conductive fabrics,", Less EMF, 2015.
doi:10.1002/mop.33040

34. Fields, R. E., "Evaluating compliance with FCC guidelines for human exposure to radiofrequency electromagnetic fields," OET Bull., Vol. 65, No. 10, 1997.

35. Sharma, P. K., N. Gupta, and P. I. Dankov, "Characterization of polydimethylsiloxane (PDMS) as a wearable antenna substrate using resonance and planar structure methods," AEU --- Int. J. Electron. Commun., Vol. 127, 153455, 2020, doi: https://doi.org/10.1016/j.aeue.2020.153455.
doi:10.1016/j.aeue.2020.153455

36. Langley, R. J. and E. A. Parker, "Double-square frequency-selective surfaces and their equivalent circuit," Electron. Lett., Vol. 19, No. 17, 675-677, 1983.
doi:10.1049/el:19830460