Vol. 111
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-07-21
Characterization of an Intra-Body Wireless Link in the UHF Band
By
Progress In Electromagnetics Research M, Vol. 111, 247-259, 2022
Abstract
Recent advancement in ultra-low-power electronics and radio communications has significantly contributed to the development of miniaturized biomedical sensors capable of capturing and transmitting wirelessly physiological data. The characterization of signal and power transmission inside the human body is of great importance. This paper investigates the case of an intra-body wireless communication in the UHF frequency band. An implanted antenna (bent dipole) is designed to operate efficiently in a biological tissue model. Predictions of the performances obtained by 3D electromagnetic simulations are compared to measurements in a realistic environment (pork meat in a box of 18x10x7 cm3). The antennas show return loss matching of -12 dB at 1,2 GHz, in the presence of the meat. Then a characterization of the transmission link between two antennas is performed both numerically and experimentally at 1,2 GHz. At this frequency, the measured |S21|2 is around -35 dB at 6 cm, and -40 dB at 8 cm. The simulation of the |S21|2 highlights the impact of the conductivity of the tissues, driving to values of -25 to -55 dB at 6 cm, and -30 to -65 dB at 8 cm. The characterization of the pork meat is evaluated experimentally around 2 S/m. During the process of characterization, this value may be over-estimated due to the pressure applied on the sample. The simulations results are compared with measurements results, and also with retro-simulations results. The latter are considered as a worst case due to the losses implied by the over-estimated conductivity value.
Citation
Fatiha Mghar Antoine Diet Chadi Gannouni Lionel Pichon Olivier Meyer Stavros Koulouridis , "Characterization of an Intra-Body Wireless Link in the UHF Band," Progress In Electromagnetics Research M, Vol. 111, 247-259, 2022.
doi:10.2528/PIERM22031103
http://www.jpier.org/PIERM/pier.php?paper=22031103
References

1. Agarwal, K., R. Jegadeesan, Y. X. Guo, and N. V. Thakor, "Wireless power transfer strategies for implantable bioelectronics," IEEE Rev. Biomed Eng., Vol. 10, 136-161, 2017.
doi:10.1109/RBME.2017.2683520

2. Kiourti, A. and K. S. Nikita, "A review of in-body biotelemetry devices: Implantables, ingestibles, and injectables," IEEE Transactions on Biomedical Engineering, Vol. 64, No. 7, 1422-1430, Jul. 2017.
doi:10.1109/TBME.2017.2668612

3. Nikita, K. S., Handbook of Biomedical Telemetry, Wiley, IEEE-Press, 2014.

4. Tortora, G., F. Mulana, G. Ciuti, P. Dario, and A. Menciassi, "Inductive-based wireless power recharging system for an innovative endoscopic capsule," Energies, Vol. 8, 10315-10334, 2015.
doi:10.3390/en80910315

5. Kissi, C., et al., "Directive low-band UWB antenna for in-body medical communications," IEEE Access, Vol. 7, 149026-149038, 2019.
doi:10.1109/ACCESS.2019.2947057

6. Kuang, S., G. Yan, and Z. Wang, "Optimization design for receiving coil with novel structure based on mutual coupling model in wireless power transmission for capsule endoscope," Energies, Vol. 13, 6460, 2020.
doi:10.3390/en13236460

7. Rahmat-Samii, Y. and E. Topsaka, Antenna and Sensor Technologies in Modern Medical Applications, Wiley, IEEE-Press, 2021.
doi:10.1002/9781119683285

8. Luu, Q.-T., S. Koulouridis, A. Diet, Y. Le Bihan, and L. Pichon, "Investigation of inductive and radiating energy harvesting for an implanted biotelemetry antenna," 11th European Conf. on Antennas and Propagation (EUCAP), Paris, Mar. 20-24, 2017.

9. Shuoliang, D., Design of a power-efficient radiative wireless system for autonomous biomedical implants, Ph.D. Report, Univ. Paris Saclay, Gif-sur-Yvette, Feb. 5, 2021.

10. Ding, S., S. Koulouridis, and L. Pichon, "Implantable wireless transmission rectenna system for biomedical wireless applications," IEEE Access, Vol. 8, 195551-195558, IEEE, 2020.
doi:10.1109/ACCESS.2020.3032848

11. Wong, K., H. Chang, C. Wang, and S. Wang, "Very-low-profile grounded coplanar waveguide-fed dual-band WLAN slot antenna for on-body antenna application," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 1, 213-217, Jan. 2020.
doi:10.1109/LAWP.2019.2958961

12. Sambandam, P., M. Kanagasabai, R. Natarajan, M. G. N. Alsath, and S. Palaniswamy, "Miniaturized button-like WBAN antenna for off-body communication," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 7, 5228-5235, Jul. 2020.
doi:10.1109/TAP.2020.2980367

13. Pei, R., et al., "Wearable belt antenna for body communication networks," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 12, 2043-2047, Dec. 2020.
doi:10.1109/LAWP.2020.3021677

14. Benaissa, S., et al., "Propagation-loss characterization for livestock implantables at (433, 868, 1400) MHz," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 8, 5166-5170, Aug. 2021.
doi:10.1109/TAP.2021.3060501

15. El-Saboni, Y., G. A. Conway, and W. G. Scanlon, "Effect of tissue boundaries on the intra-body communication channel at 2.38 GHz," 2017 International Workshop on Antenna Technology: Small Antennas, Innovative Structures, and Applications (iWAT), 285-288, 2017.
doi:10.1109/IWAT.2017.7915381

16. De Santis, V. and M. Feliziani, "Intra-body channel characterization of medical implant devices," 10th International Symposium on Electromagnetic Compatibility, 816-819, 2011.

17. Fang, X., et al., "Experimental in-body to on-body and in-body to in-body path loss models of planar elliptical ring implanted antenna in the ultra-wide band," 2019 13th International Symposium on Medical Information and Communication Technology (ISMICT), 1-5, 2019.

18. Brumm, J. and G. Bauch, "Verification of a simplified channel modeling technique for ultra wideband in-body communication with simulations," 2020 14th European Conference on Antennas and Propagation (EuCAP), 1-5, 2020.

19. Lin, H., M. Takahashi, K. Saito, and K. Ito, "Performance of implantable folded dipole antenna for in-body wireless communication," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 3, 1363-1370, Mar. 2013.
doi:10.1109/TAP.2012.2227099

20. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues," Phys. Med. Biol., Vol. 41, No. 11, 2271-2293, Nov. 1996.
doi:10.1088/0031-9155/41/11/003

21. Bernard, L., "Caracterisation electrique des tissus biologiques et calcul des phenomenes induits dans le corps humain par des champs electromagnetiques de frequence inferieure au GHz. Modelisation et simulation,", fftel00179791v3, Ecole Centrale de Lyon, Universidade federal de Minas Gerais, Francais, 2007.

22. Deschamps, G., "Impedance of an antenna in a conducting medium," IRE Transactions on Antennas and Propagation, Vol. 10, No. 5, 648-650, Sep. 1962.
doi:10.1109/TAP.1962.1137923

23. Zemmour, H., G. Baudoin, and A. Diet, "Soil effects on the underground-to-aboveground communication link in ultrawideband wireless underground sensor networks," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 218-221, Institute of Electrical and Electronics Engineers, 2017.

24. Balanis, C. A., Antenna Theory, Analysis and Design, 3rd Ed., Wiley Interscience, USA, 2005, ISBN 978-0-471-66782-7.

25. Ngadi, M., S. R. S. Dev, and G. S. Vijaya, "Dielectric properties of pork muscle," International Journal of Food Properties, Vol. 18, No. 1, 12-20, 2015.
doi:10.1080/10942912.2010.528112

26. Belhadj-Tahar, N. E. and A. Fourrier-Lamer, "Broad-band analysis of a coaxial discontinuity used for dielectric measurements," IEEE Transactions on Microwave Theory and Techniques, Vol. 34, No. 3, 346-350, 1986.
doi:10.1109/TMTT.1986.1133342

27. Ibraheem, A. and M. Manteghi, "Intra-body propagation channel investigation using electrically coupled loop antenna," Progress In Electromagnetics Research M, Vol. 40, 57-67, 2014.
doi:10.2528/PIERM14102110

28. Mirmoosa, M. S., S. Nordebo, and S. A. Tretyakov, "Physical meaning of the dipole radiation resistance in lossless and lossy media," IEEE Antennas and Propagation Magazine, Vol. 62, 75-81, 2020.
doi:10.1109/MAP.2020.2976915

29. Karlsson, A., "Physical limitations of antennas in a lossy medium," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 8, 2027-2033, 2004.
doi:10.1109/TAP.2004.832335

30. Warren, C. and A. Giannopoulos, "Characterisation of a ground penetrating radar antenna in lossless homogeneous and lossy heterogeneous environments," Signal Processing, Vol. 132, 221-226, 2017, ISSN 0165-1684.
doi:10.1016/j.sigpro.2016.04.010

31. Belhadj-Tahar, N.-E. and A. Fourrier-Lamer, "Broad-band analysis of a coaxial discontinuity used for dielectric measurements," IEEE Transactions on Microwave Theory and Techniques, Vol. 34, No. 3, 346-350, 1986.
doi:10.1109/TMTT.1986.1133342

32. Acikgoz, H., Y. Le Bihan, O. Meyer, and L. Pichon, "Neural networks for broad-band evaluation of complex permittivity using a coaxial discontinuity," The European Physical Journal Applied Physics, Vol. 39, No. 2, 197-201, 2007.
doi:10.1051/epjap:2007073

33. Meyer, O., C. Gilbert, A. Fourrier-Lamer, and H. Cachet, "In-vitro broad band impedance study of a biochemical reaction under nanopulses: Electrode impedance as a reaction sensor," Journal of The Electrochemical Society, Vol. 161, No. 4, B62-B69, 2014.
doi:10.1149/2.074404jes