1. Agarwal, K., R. Jegadeesan, Y. X. Guo, and N. V. Thakor, "Wireless power transfer strategies for implantable bioelectronics," IEEE Rev. Biomed Eng., Vol. 10, 136-161, 2017.
doi:10.1109/RBME.2017.2683520 Google Scholar
2. Kiourti, A. and K. S. Nikita, "A review of in-body biotelemetry devices: Implantables, ingestibles, and injectables," IEEE Transactions on Biomedical Engineering, Vol. 64, No. 7, 1422-1430, Jul. 2017.
doi:10.1109/TBME.2017.2668612 Google Scholar
3. Nikita, K. S., Handbook of Biomedical Telemetry, Wiley, 2014.
4. Tortora, G., F. Mulana, G. Ciuti, P. Dario, and A. Menciassi, "Inductive-based wireless power recharging system for an innovative endoscopic capsule," Energies, Vol. 8, 10315-10334, 2015.
doi:10.3390/en80910315 Google Scholar
5. Kissi, C., et al., "Directive low-band UWB antenna for in-body medical communications," IEEE Access, Vol. 7, 149026-149038, 2019.
doi:10.1109/ACCESS.2019.2947057 Google Scholar
6. Kuang, S., G. Yan, and Z. Wang, "Optimization design for receiving coil with novel structure based on mutual coupling model in wireless power transmission for capsule endoscope," Energies, Vol. 13, 6460, 2020.
doi:10.3390/en13236460 Google Scholar
7. Rahmat-Samii, Y. and E. Topsaka, Antenna and Sensor Technologies in Modern Medical Applications, Wiley, 2021.
doi:10.1002/9781119683285
8. Luu, Q.-T., S. Koulouridis, A. Diet, Y. Le Bihan, and L. Pichon, "Investigation of inductive and radiating energy harvesting for an implanted biotelemetry antenna," 11th European Conf. on Antennas and Propagation (EUCAP), Paris, Mar. 20-24, 2017. Google Scholar
9. Shuoliang, D., Design of a power-efficient radiative wireless system for autonomous biomedical implants, Ph.D. Report, Univ. Paris Saclay, Gif-sur-Yvette, Feb. 5, 2021.
10. Ding, S., S. Koulouridis, and L. Pichon, "Implantable wireless transmission rectenna system for biomedical wireless applications," IEEE Access, Vol. 8, 195551-195558, IEEE, 2020.
doi:10.1109/ACCESS.2020.3032848 Google Scholar
11. Wong, K., H. Chang, C. Wang, and S. Wang, "Very-low-profile grounded coplanar waveguide-fed dual-band WLAN slot antenna for on-body antenna application," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 1, 213-217, Jan. 2020.
doi:10.1109/LAWP.2019.2958961 Google Scholar
12. Sambandam, P., M. Kanagasabai, R. Natarajan, M. G. N. Alsath, and S. Palaniswamy, "Miniaturized button-like WBAN antenna for off-body communication," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 7, 5228-5235, Jul. 2020.
doi:10.1109/TAP.2020.2980367 Google Scholar
13. Pei, R., et al., "Wearable belt antenna for body communication networks," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 12, 2043-2047, Dec. 2020.
doi:10.1109/LAWP.2020.3021677 Google Scholar
14. Benaissa, S., et al., "Propagation-loss characterization for livestock implantables at (433, 868, 1400) MHz," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 8, 5166-5170, Aug. 2021.
doi:10.1109/TAP.2021.3060501 Google Scholar
15. El-Saboni, Y., G. A. Conway, and W. G. Scanlon, "Effect of tissue boundaries on the intra-body communication channel at 2.38 GHz," 2017 International Workshop on Antenna Technology: Small Antennas, Innovative Structures, and Applications (iWAT), 285-288, 2017.
doi:10.1109/IWAT.2017.7915381 Google Scholar
16. De Santis, V. and M. Feliziani, "Intra-body channel characterization of medical implant devices," 10th International Symposium on Electromagnetic Compatibility, 816-819, 2011. Google Scholar
17. Fang, X., et al., "Experimental in-body to on-body and in-body to in-body path loss models of planar elliptical ring implanted antenna in the ultra-wide band," 2019 13th International Symposium on Medical Information and Communication Technology (ISMICT), 1-5, 2019. Google Scholar
18. Brumm, J. and G. Bauch, "Verification of a simplified channel modeling technique for ultra wideband in-body communication with simulations," 2020 14th European Conference on Antennas and Propagation (EuCAP), 1-5, 2020. Google Scholar
19. Lin, H., M. Takahashi, K. Saito, and K. Ito, "Performance of implantable folded dipole antenna for in-body wireless communication," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 3, 1363-1370, Mar. 2013.
doi:10.1109/TAP.2012.2227099 Google Scholar
20. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues," Phys. Med. Biol., Vol. 41, No. 11, 2271-2293, Nov. 1996.
doi:10.1088/0031-9155/41/11/003 Google Scholar
21. Bernard, L., "Caracterisation electrique des tissus biologiques et calcul des phenomenes induits dans le corps humain par des champs electromagnetiques de frequence inferieure au GHz. Modelisation et simulation,", fftel00179791v3, Ecole Centrale de Lyon, Universidade federal de Minas Gerais, Francais, 2007. Google Scholar
22. Deschamps, G., "Impedance of an antenna in a conducting medium," IRE Transactions on Antennas and Propagation, Vol. 10, No. 5, 648-650, Sep. 1962.
doi:10.1109/TAP.1962.1137923 Google Scholar
23. Zemmour, H., G. Baudoin, and A. Diet, "Soil effects on the underground-to-aboveground communication link in ultrawideband wireless underground sensor networks," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 218-221, Institute of Electrical and Electronics Engineers, 2017. Google Scholar
24. Balanis, C. A., Antenna Theory, Analysis and Design, 3rd Ed., Wiley Interscience, 2005, ISBN 978-0-471-66782-7.
25. Ngadi, M., S. R. S. Dev, and G. S. Vijaya, "Dielectric properties of pork muscle," International Journal of Food Properties, Vol. 18, No. 1, 12-20, 2015.
doi:10.1080/10942912.2010.528112 Google Scholar
26. Belhadj-Tahar, N. E. and A. Fourrier-Lamer, "Broad-band analysis of a coaxial discontinuity used for dielectric measurements," IEEE Transactions on Microwave Theory and Techniques, Vol. 34, No. 3, 346-350, 1986.
doi:10.1109/TMTT.1986.1133342 Google Scholar
27. Ibraheem, A. and M. Manteghi, "Intra-body propagation channel investigation using electrically coupled loop antenna," Progress In Electromagnetics Research M, Vol. 40, 57-67, 2014.
doi:10.2528/PIERM14102110 Google Scholar
28. Mirmoosa, M. S., S. Nordebo, and S. A. Tretyakov, "Physical meaning of the dipole radiation resistance in lossless and lossy media," IEEE Antennas and Propagation Magazine, Vol. 62, 75-81, 2020.
doi:10.1109/MAP.2020.2976915 Google Scholar
29. Karlsson, A., "Physical limitations of antennas in a lossy medium," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 8, 2027-2033, 2004.
doi:10.1109/TAP.2004.832335 Google Scholar
30. Warren, C. and A. Giannopoulos, "Characterisation of a ground penetrating radar antenna in lossless homogeneous and lossy heterogeneous environments," Signal Processing, Vol. 132, 221-226, 2017, ISSN 0165-1684.
doi:10.1016/j.sigpro.2016.04.010 Google Scholar
31. Belhadj-Tahar, N.-E. and A. Fourrier-Lamer, "Broad-band analysis of a coaxial discontinuity used for dielectric measurements," IEEE Transactions on Microwave Theory and Techniques, Vol. 34, No. 3, 346-350, 1986.
doi:10.1109/TMTT.1986.1133342 Google Scholar
32. Acikgoz, H., Y. Le Bihan, O. Meyer, and L. Pichon, "Neural networks for broad-band evaluation of complex permittivity using a coaxial discontinuity," The European Physical Journal Applied Physics, Vol. 39, No. 2, 197-201, 2007.
doi:10.1051/epjap:2007073 Google Scholar
33. Meyer, O., C. Gilbert, A. Fourrier-Lamer, and H. Cachet, "In-vitro broad band impedance study of a biochemical reaction under nanopulses: Electrode impedance as a reaction sensor," Journal of The Electrochemical Society, Vol. 161, No. 4, B62-B69, 2014.
doi:10.1149/2.074404jes Google Scholar