Vol. 111
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-07-04
Graphene-Based Material for Microstrip Bandpass Filter
By
Progress In Electromagnetics Research M, Vol. 111, 133-143, 2022
Abstract
Graphene has become one of the most essential materials in recent years due to its numerous advantages and benefits. Because of its features, graphene is becoming more widespread in a variety of applications, particularly in electrical devices. In this research, graphene thick film paste (GTP) has been used to fabricate a microstrip bandpass filter (BPF). To obtain graphene nanoparticle powder, graphene oxide (GO) was synthesized from nanoparticle graphite using the Improved Hummers Method (IHM). The graphene oxide (GO) was chemically reduced to reduced graphene oxide or graphene (rGO) using ascorbic acid as the reducing agent. The structural and morphological properties of three nanoparticle powders, G, GO, and rGO, were investigated. An X-ray Diffractometer (XRD) (Rigaku Miniflex) with a diffraction angle of 10˚ to 60˚ was used to differentiate and determine the structure of crystalline materials. Thermal stability of the samples was identified using thermogravimetric analysis (TGA). The synthesized rGO has been used to fabricate BPF circuit. The obtained nanoparticle rGO was mixed with an organic carrier composed of linseed oil, m-xylene, and α-terpineol to form GTP. The GTP was screen printed on RT duroid 5880 substrates to form BPF circuit. The BPF circuit that was created was tested for paste-to-substrate adhesion. Then, the fabricated BPF circuit was tested using vector network analyzer (VNA) and compared with conventional BPF to obtaine scattering parameter results which include return loss, insertion loss, and bandwidth. The graphene BPF circuit demonstrated a good performance with return loss and insertion loss at -27.481 dB and -0.725 dB, respectively, and a bandwidth of 1.5916 GHz while conventional return loss was -26.750 dB and insertion loss value the same as graphene which is -0.725 dB and bandwidth 0.7077 GHz. From the result graphene BPF showed better result than conventional BPF.
Citation
Nur Iffah Zulaikha Azman Nur Amirah Athirah Zaini You Kok Yeow Fahmiruddin Esa Rodziah Nazlan Mohamad Ashry Jusoh , "Graphene-Based Material for Microstrip Bandpass Filter," Progress In Electromagnetics Research M, Vol. 111, 133-143, 2022.
doi:10.2528/PIERM22040601
http://www.jpier.org/PIERM/pier.php?paper=22040601
References

1. Juanda, E. A., T. Hariyadi, U. Mukhidin, and R. N. Yuniar, "Design and development of band pass filter microstrip cascade trisection with open stub and defected ground structure (DGS) in 1800 MHz frequency," Journal of Engineering Science and Technology (JESTEC), Vol. 15, No. 1, 372-381, 2020, jestec.taylors.edu.my/Vol%2015%20issue%201%20February%202020/15_1_28.pdf.

2. Jasim, S. E., M. A. Jusoh, S. N. S. Mahmud, and A. H. Zamani, "Design of 2.5 GHz broad bandwidth microwave bandpass filter at operating frequency of 10 GHz using HFSS," IOP Conference Series: Materials Science and Engineering, Vol. 342, No. 1, 012022, IOP Publishing, April 2018, dx.doi.org/10.1088/1757-899X/342/1/012022.

3. Newman, N. and W. G. Lyons, "High-temperature superconducting microwave devices: Fundamental issues in materials, physics, and engineering," Journal of Superconductivity, Vol. 6, No. 3, 119-160, 1993.
doi:10.1007/BF00625741

4. Liu, A. Q., A. B. Yu, and Q. X. Zhang, "Broad-band band-pass and band-stop filters with sharp cut-off frequencies based on series CPW stubs," 2006 IEEE MTT-S International Microwave Symposium Digest, 353-356, IEEE, June 2006.
doi:10.1109/MWSYM.2006.249525

5. Nisenoff, M., "Microwave superconductivity Part 1: History, properties and early applications," 2011 IEEE MTT-S International Microwave Symposium, 1-4, IEEE, June 2011.

6. Vineetha, K. V., M. S. Kumar, B. T. P. Madhav, and M. C. Rao, "Flexible bandpass filter with silver conductive layer for GPS, ISM, PCS, LTE and WLAN applications," Materials Today: Proceedings, Vol. 42, 1321-1328, 2021.
doi:10.1016/j.matpr.2020.12.1187

7. Ahmad, W., D. Budimir, A. Maric, and N. Ivanisevic, "Inkjet printed bandpass filters and filtennas using silver nanoparticle ink on flexible substrate," 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 145-146, IEEE, July 2015.

8. Chen, J., J. Zhang, Y. Zhao, L. Li, T. Su, C. Fan, and B. Wu, "High-selectivity bandpass filter with controllable attenuation based on graphene nanoplates," Materials, Vol. 15, No. 5, 1694, 2022.
doi:10.3390/ma15051694

9. Sa'don, S. N. H., M. H. Jamaluddin, M. R. Kamarudin, F. Ahmad, Y. Yamada, K. Kamardin, and I. H. Idris, "Analysis of graphene antenna properties for 5G applications," Sensors, Vol. 19, No. 22, 4835, 2019.
doi:10.3390/s19224835

10. Lee, H. J. and J. G. Yook, "Graphene nanomaterials-based radio-frequency/microwave biosensors for biomaterials detection," Materials, Vol. 12, No. 6, 952, 2019.
doi:10.3390/ma12060952

11. Fowler, J. D., M. J. Allen, V. C. Tung, Y. Yang, R. B. Kaner, and B. H. Weiller, "Practical chemical sensors from chemically derived graphene," ACS Nano, Vol. 3, No. 2, 301-306, 2009.
doi:10.1021/nn800593m

12. Zhang, A. Q., W. B. Lu, Z. G. Liu, H. Chen, and B. H. Huang, "Dynamically tunable substrate-integrated-waveguide attenuator using graphene," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, No. 6, 3081-3089, 2018.
doi:10.1109/TMTT.2018.2809577

13. Ilic, A. Z., B. M. Bukvic, D. Budimir, and M. M. Ilic, "Tuning the filter responses with graphene based resonators," 2019 International Conference on Electromagnetics in Advanced Applications (ICEAA), 0151-0152, IEEE, September 2019.
doi:10.1109/ICEAA.2019.8879418

14. Pierantoni, L., D. Mencarelli, M. Bozzi, R. Moro, S. Moscato, L. Perregrini, and S. Bellucci, "Broadband microwave attenuator based on few layer graphene flakes," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 8, 2491-2497, 2015.
doi:10.1109/TMTT.2015.2441062

15. Yasir, M., S. Bistarelli, A. Cataldo, M. Bozzi, L. Perregrini, and S. Bellucci, "Enhanced tunable microstrip attenuator based on few layer graphene flakes," IEEE Microwave and Wireless Components Letters, Vol. 27, No. 4, 332-334, 2017.
doi:10.1109/LMWC.2017.2679042

16. Wu, B., C. Fan, X. Feng, Y. T. Zhao, J. Ning, D. Wang, and T. Su, "Dynamically tunable filtering attenuator based on graphene integrated microstrip resonators," IEEE Transactions on Microwave Theory and Techniques, Vol. 68, No. 12, 5270-5278, 2020.
doi:10.1109/TMTT.2020.3017197

17. Yasir, M., P. Savi, S. Bistarelli, A. Cataldo, M. Bozzi, L. Perregrini, and S. Bellucci, "A planar antenna with voltage-controlled frequency tuning based on few-layer graphene," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2380-2383, 2017.
doi:10.1109/LAWP.2017.2718668

18. Wu, B., Y. Zhang, H. Zu, C. Fan, and W. Lu, "Tunable grounded coplanar waveguide attenuator based on graphene nanoplatesm," IEEE Microwave and Wireless Components Letters, Vol. 29, No. 5, 330-332, 2019.
doi:10.1109/LMWC.2019.2908034

19. Wang, W., C. Ma, X. Zhang, J. Shen, N. Hanagata, J. Huangfu, and M. Xu, "High-performance printable 2.4 GHz graphene-based antenna using water-transferring technology," Science and Technology of Advanced Materials, Vol. 20, No. 1, 870-875, 2019.
doi:10.1080/14686996.2019.1653741

20. Song, R., G. L. Huang, C. Liu, N. Zhang, J. Zhang, C. Liu, and D. He, "High-conductive graphene film based antenna array for 5G mobile communications," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 29, No. 6, e21692, 2019.
doi:10.1002/mmce.21692

21. Hsieh, C. C. and W. R. Liu, "Synthesis and characterization of nitrogen-doped graphene nanosheets/copper composite film for thermal dissipation," Carbon, Vol. 118, 1-7, 2017.
doi:10.1016/j.carbon.2017.03.025

22. Andrijanto, E., S. Shoelarta, G. Subiyanto, and S. Rifki, "Facile synthesis of graphene from graphite using ascorbic acid as reducing agent," AIP Conference Proceedings, Vol. 1725, No. 1, 020003, AIP Publishing LLC, April 2016.

23. Soltani, T. and B. K. Lee, "A benign ultrasonic route to reduced graphene oxide from pristine graphite," Journal of Colloid and Interface Science, Vol. 486, 337-343, 2017.
doi:10.1016/j.jcis.2016.09.075

24. El Achaby, M., F. Z. Arrakhiz, S. Vaudreuil, E. M. Essassi, and A. Qaiss, "Piezoelectric β-polymorph formation and properties enhancement in graphene oxide-PVDF nanocomposite films," Applied Surface Science, Vol. 258, No. 19, 7668-7677, 2012.
doi:10.1016/j.apsusc.2012.04.118

25. Gong, Y., D. Li, Q. Fu, and C. Pan, "Influence of graphene microstructures on electrochemical performance for supercapacitors," Progress in Natural Science: Materials International, Vol. 25, No. 5, 379-385, 2015.
doi:10.1016/j.pnsc.2015.10.004

26. Faniyi, I. O., O. Fasakin, B. Olofinjana, A. S. Adekunle, T. V. Oluwasusi, M. A. Eleruja, and E. O. B. Ajayi, "The comparative analyses of reduced graphene oxide (RGO) prepared via green, mild and chemical approaches," SN Applied Sciences, Vol. 1, No. 10, 1-7, 2019.
doi:10.1007/s42452-019-1188-7

27. Akhavan, O., M. Kalaee, Z. S. Alavi, S. M. A. Ghiasi, and A. Esfandiar, "Increasing the antioxidant activity of green tea polyphenols in the presence of iron for the reduction of graphene oxide," Carbon, Vol. 50, No. 8, 3015-3025, 2012.
doi:10.1016/j.carbon.2012.02.087

28. Pasricha, R., S. Gupta, A. G. Joshi, N., Bahadur, D. Haranath, K. N. Sood, and S. Singh, "Directed nanoparticle reduction on graphene," Materials Today, Vol. 15, No. 3, 118-125, 2012.
doi:10.1016/S1369-7021(12)70047-0

29. Esfandiar, A., O. Akhavan, and A. Irajizad, "Melatonin as a powerful bio-antioxidant for reduction of graphene oxide," Journal of Materials Chemistry, Vol. 21, No. 29, 10907-10914, 2011.
doi:10.1039/c1jm10151j

30. Hsieh, C. T., C. Y. Lin, Y. F. Chen, J. S. Lin, and H. Teng, "Silver nanorods attached to graphene sheets as anode materials for lithium-ion batteries," Carbon, Vol. 62, 109-116, 2013.
doi:10.1016/j.carbon.2013.06.002

31. Bhanuprakash, L., T. A. Sajith, and S. Varghese, "Study of mechanical performances of epoxy nanocomposites with exfoliated-reduced graphene oxide,", www.researchgate.net/publication/333421331_Study_of_Mechanical_Performances_of_Epoxy_Nano composites_with_Exfoliated-_Reduced_Graphene_Oxide.

32. Mahmud, S. N. S., M. A. Jusoh, S. E. Jasim, A. H. Zamani, and M. H. Abdullah, "Design, simulation and analysis a microstrip antenna using PU-EFB substrate," IOP Conference Series: Materials Science and Engineering, Vol. 342, No. 1, 012021, IOP Publishing, April 2018.