1. Juanda, E. A., T. Hariyadi, U. Mukhidin, and R. N. Yuniar, "Design and development of band pass filter microstrip cascade trisection with open stub and defected ground structure (DGS) in 1800 MHz frequency," Journal of Engineering Science and Technology (JESTEC), Vol. 15, No. 1, 372-381, 2020, jestec.taylors.edu.my/Vol%2015%20issue%201%20February%202020/15_1_28.pdf. Google Scholar
2. Jasim, S. E., M. A. Jusoh, S. N. S. Mahmud, and A. H. Zamani, "Design of 2.5 GHz broad bandwidth microwave bandpass filter at operating frequency of 10 GHz using HFSS," IOP Conference Series: Materials Science and Engineering, Vol. 342, No. 1, 012022, IOP Publishing, April 2018, dx.doi.org/10.1088/1757-899X/342/1/012022. Google Scholar
3. Newman, N. and W. G. Lyons, "High-temperature superconducting microwave devices: Fundamental issues in materials, physics, and engineering," Journal of Superconductivity, Vol. 6, No. 3, 119-160, 1993.
doi:10.1007/BF00625741 Google Scholar
4. Liu, A. Q., A. B. Yu, and Q. X. Zhang, "Broad-band band-pass and band-stop filters with sharp cut-off frequencies based on series CPW stubs," 2006 IEEE MTT-S International Microwave Symposium Digest, 353-356, IEEE, June 2006.
doi:10.1109/MWSYM.2006.249525 Google Scholar
5. Nisenoff, M., "Microwave superconductivity Part 1: History, properties and early applications," 2011 IEEE MTT-S International Microwave Symposium, 1-4, IEEE, June 2011. Google Scholar
6. Vineetha, K. V., M. S. Kumar, B. T. P. Madhav, and M. C. Rao, "Flexible bandpass filter with silver conductive layer for GPS, ISM, PCS, LTE and WLAN applications," Materials Today: Proceedings, Vol. 42, 1321-1328, 2021.
doi:10.1016/j.matpr.2020.12.1187 Google Scholar
7. Ahmad, W., D. Budimir, A. Maric, and N. Ivanisevic, "Inkjet printed bandpass filters and filtennas using silver nanoparticle ink on flexible substrate," 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 145-146, IEEE, July 2015. Google Scholar
8. Chen, J., J. Zhang, Y. Zhao, L. Li, T. Su, C. Fan, and B. Wu, "High-selectivity bandpass filter with controllable attenuation based on graphene nanoplates," Materials, Vol. 15, No. 5, 1694, 2022.
doi:10.3390/ma15051694 Google Scholar
9. Sa'don, S. N. H., M. H. Jamaluddin, M. R. Kamarudin, F. Ahmad, Y. Yamada, K. Kamardin, and I. H. Idris, "Analysis of graphene antenna properties for 5G applications," Sensors, Vol. 19, No. 22, 4835, 2019.
doi:10.3390/s19224835 Google Scholar
10. Lee, H. J. and J. G. Yook, "Graphene nanomaterials-based radio-frequency/microwave biosensors for biomaterials detection," Materials, Vol. 12, No. 6, 952, 2019.
doi:10.3390/ma12060952 Google Scholar
11. Fowler, J. D., M. J. Allen, V. C. Tung, Y. Yang, R. B. Kaner, and B. H. Weiller, "Practical chemical sensors from chemically derived graphene," ACS Nano, Vol. 3, No. 2, 301-306, 2009.
doi:10.1021/nn800593m Google Scholar
12. Zhang, A. Q., W. B. Lu, Z. G. Liu, H. Chen, and B. H. Huang, "Dynamically tunable substrate-integrated-waveguide attenuator using graphene," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, No. 6, 3081-3089, 2018.
doi:10.1109/TMTT.2018.2809577 Google Scholar
13. Ilic, A. Z., B. M. Bukvic, D. Budimir, and M. M. Ilic, "Tuning the filter responses with graphene based resonators," 2019 International Conference on Electromagnetics in Advanced Applications (ICEAA), 0151-0152, IEEE, September 2019.
doi:10.1109/ICEAA.2019.8879418 Google Scholar
14. Pierantoni, L., D. Mencarelli, M. Bozzi, R. Moro, S. Moscato, L. Perregrini, and S. Bellucci, "Broadband microwave attenuator based on few layer graphene flakes," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 8, 2491-2497, 2015.
doi:10.1109/TMTT.2015.2441062 Google Scholar
15. Yasir, M., S. Bistarelli, A. Cataldo, M. Bozzi, L. Perregrini, and S. Bellucci, "Enhanced tunable microstrip attenuator based on few layer graphene flakes," IEEE Microwave and Wireless Components Letters, Vol. 27, No. 4, 332-334, 2017.
doi:10.1109/LMWC.2017.2679042 Google Scholar
16. Wu, B., C. Fan, X. Feng, Y. T. Zhao, J. Ning, D. Wang, and T. Su, "Dynamically tunable filtering attenuator based on graphene integrated microstrip resonators," IEEE Transactions on Microwave Theory and Techniques, Vol. 68, No. 12, 5270-5278, 2020.
doi:10.1109/TMTT.2020.3017197 Google Scholar
17. Yasir, M., P. Savi, S. Bistarelli, A. Cataldo, M. Bozzi, L. Perregrini, and S. Bellucci, "A planar antenna with voltage-controlled frequency tuning based on few-layer graphene," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2380-2383, 2017.
doi:10.1109/LAWP.2017.2718668 Google Scholar
18. Wu, B., Y. Zhang, H. Zu, C. Fan, and W. Lu, "Tunable grounded coplanar waveguide attenuator based on graphene nanoplatesm," IEEE Microwave and Wireless Components Letters, Vol. 29, No. 5, 330-332, 2019.
doi:10.1109/LMWC.2019.2908034 Google Scholar
19. Wang, W., C. Ma, X. Zhang, J. Shen, N. Hanagata, J. Huangfu, and M. Xu, "High-performance printable 2.4 GHz graphene-based antenna using water-transferring technology," Science and Technology of Advanced Materials, Vol. 20, No. 1, 870-875, 2019.
doi:10.1080/14686996.2019.1653741 Google Scholar
20. Song, R., G. L. Huang, C. Liu, N. Zhang, J. Zhang, C. Liu, and D. He, "High-conductive graphene film based antenna array for 5G mobile communications," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 29, No. 6, e21692, 2019.
doi:10.1002/mmce.21692 Google Scholar
21. Hsieh, C. C. and W. R. Liu, "Synthesis and characterization of nitrogen-doped graphene nanosheets/copper composite film for thermal dissipation," Carbon, Vol. 118, 1-7, 2017.
doi:10.1016/j.carbon.2017.03.025 Google Scholar
22. Andrijanto, E., S. Shoelarta, G. Subiyanto, and S. Rifki, "Facile synthesis of graphene from graphite using ascorbic acid as reducing agent," AIP Conference Proceedings, Vol. 1725, No. 1, 020003, AIP Publishing LLC, April 2016. Google Scholar
23. Soltani, T. and B. K. Lee, "A benign ultrasonic route to reduced graphene oxide from pristine graphite," Journal of Colloid and Interface Science, Vol. 486, 337-343, 2017.
doi:10.1016/j.jcis.2016.09.075 Google Scholar
24. El Achaby, M., F. Z. Arrakhiz, S. Vaudreuil, E. M. Essassi, and A. Qaiss, "Piezoelectric β-polymorph formation and properties enhancement in graphene oxide-PVDF nanocomposite films," Applied Surface Science, Vol. 258, No. 19, 7668-7677, 2012.
doi:10.1016/j.apsusc.2012.04.118 Google Scholar
25. Gong, Y., D. Li, Q. Fu, and C. Pan, "Influence of graphene microstructures on electrochemical performance for supercapacitors," Progress in Natural Science: Materials International, Vol. 25, No. 5, 379-385, 2015.
doi:10.1016/j.pnsc.2015.10.004 Google Scholar
26. Faniyi, I. O., O. Fasakin, B. Olofinjana, A. S. Adekunle, T. V. Oluwasusi, M. A. Eleruja, and E. O. B. Ajayi, "The comparative analyses of reduced graphene oxide (RGO) prepared via green, mild and chemical approaches," SN Applied Sciences, Vol. 1, No. 10, 1-7, 2019.
doi:10.1007/s42452-019-1188-7 Google Scholar
27. Akhavan, O., M. Kalaee, Z. S. Alavi, S. M. A. Ghiasi, and A. Esfandiar, "Increasing the antioxidant activity of green tea polyphenols in the presence of iron for the reduction of graphene oxide," Carbon, Vol. 50, No. 8, 3015-3025, 2012.
doi:10.1016/j.carbon.2012.02.087 Google Scholar
28. Pasricha, R., S. Gupta, A. G. Joshi, N., Bahadur, D. Haranath, K. N. Sood, and S. Singh, "Directed nanoparticle reduction on graphene," Materials Today, Vol. 15, No. 3, 118-125, 2012.
doi:10.1016/S1369-7021(12)70047-0 Google Scholar
29. Esfandiar, A., O. Akhavan, and A. Irajizad, "Melatonin as a powerful bio-antioxidant for reduction of graphene oxide," Journal of Materials Chemistry, Vol. 21, No. 29, 10907-10914, 2011.
doi:10.1039/c1jm10151j Google Scholar
30. Hsieh, C. T., C. Y. Lin, Y. F. Chen, J. S. Lin, and H. Teng, "Silver nanorods attached to graphene sheets as anode materials for lithium-ion batteries," Carbon, Vol. 62, 109-116, 2013.
doi:10.1016/j.carbon.2013.06.002 Google Scholar
31. Bhanuprakash, L., T. A. Sajith, and S. Varghese, "Study of mechanical performances of epoxy nanocomposites with exfoliated-reduced graphene oxide,", www.researchgate.net/publication/333421331_Study_of_Mechanical_Performances_of_Epoxy_Nano composites_with_Exfoliated-_Reduced_Graphene_Oxide. Google Scholar
32. Mahmud, S. N. S., M. A. Jusoh, S. E. Jasim, A. H. Zamani, and M. H. Abdullah, "Design, simulation and analysis a microstrip antenna using PU-EFB substrate," IOP Conference Series: Materials Science and Engineering, Vol. 342, No. 1, 012021, IOP Publishing, April 2018. Google Scholar