1. Liu, S., D. Yang, Y. Chen, K. Sun, X. Zhang, and Y. Xiang, "Low-profile broadband metasurface antenna under multimode resonance," IEEE Antennas and Wireless Propagation Letters, Vol. 20, No. 9, 1696-1700, 2021.
doi:10.1109/LAWP.2021.3094302 Google Scholar
2. Wang, Y., K. Chen, Y. Li, and Q. Cao, "Design of nonresonant metasurfaces for broadband RCS reduction," IEEE Antennas and Wireless Propagation Letters, Vol. 20, No. 3, 346-350, 2021.
doi:10.1109/LAWP.2021.3049882 Google Scholar
3. Huang, H.-F. and J. Zhang, "High-efficiency multifunction metasurface based on polarization sensitivity," IEEE Antennas and Wireless Propagation Letters, Vol. 20, No. 8, 1508-1512, 2021.
doi:10.1109/LAWP.2021.3089283 Google Scholar
4. Lou, Q. and Z. N. Chen, "Sidelobe suppression of metalens antenna by amplitude and phase controllable metasurfaces," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 10, 6977-6981, 2021.
doi:10.1109/TAP.2021.3076312 Google Scholar
5. Su, J., Y. Guo, X. Chen, and W. Zhang, "A dual-wideband polarization-insensitive linear polarization converter based on metasurface," Progress In Electromagnetics Research M, Vol. 108, 213-222, 2022.
doi:10.2528/PIERM22012901 Google Scholar
6. Khajeh-Khalili, F. and Y. Dohni-Zadeh, "High-gain multi-layer antenna using metasurface for application in terahertz communication systems," Int. J. Electron. Device Phys., Vol. 4, 007, 2020. Google Scholar
7. Kim, S., A. Li, J. Lee, and D. F. Sievenpiper, "Active self-tuning metasurface with enhanced absorbing frequency range for suppression of high-power surface currents," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 5, 2759-2767, 2021.
doi:10.1109/TAP.2020.3032834 Google Scholar
8. Shrestha, S., A. A. Baba, S. M. Abbas, M. Asadnia, and R. M. Hashmi, "A horn antenna covered with a 3D-printed metasurface for gain enhancement," Electronics, Vol. 10, No. 2, 119, 2021.
doi:10.3390/electronics10020119 Google Scholar
9. Almizan, H., Z. A. A. Hassain, T. A. Elwi, and S. M. Al-Sabti, "Controlling gain enhancement using a reconfigurable metasurface layer," 12th International Symposium on Advanced Topics in Electrical Engineering (ATEE), 1-6, 2021. Google Scholar
10. Ma, Q., G. D. Bai, H. B. Jing, et al. "Smart metasurface with self-adaptively reprogrammable functions," Light Sci. Appl., Vol. 8, No. 98, 2019. Google Scholar
11. Samantaray, D. and S. Bhattacharyya, "A gain-enhanced slotted patch antenna using metasurface as superstrate configuration," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 9, 6548-6556, 2020.
doi:10.1109/TAP.2020.2990280 Google Scholar
12. Bai, H., G.-M. Wang, and X.-J. Zou, "A wideband and multi-mode metasurface antenna with gain enhancement," AEU --- International Journal of Electronics and Communications, Vol. 126, 153402, 2020.
doi:10.1016/j.aeue.2020.153402 Google Scholar
13. Dawar, P. and M. Abdalla, "Miniaturized dual-band embedded NZI metasurface antenna with front-to-back radiation ratio enhancement," Progress In Electromagnetics Research B, Vol. 95, 61-79, 2022.
doi:10.2528/PIERB22020404 Google Scholar
14. Lou, T., X.-X. Yang, G. He, W. Che, and S. Gao, "Dual-polarized nonreciprocal spatial amplification active metasurface," IEEE Antennas and Wireless Propagation Letters, Vol. 20, No. 9, 1789-1793, 2021.
doi:10.1109/LAWP.2021.3097062 Google Scholar
15. Phon, R. and S. Lim, "Self-reconfigurable dual-mode metasurface," IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, 885-886, 2020.
doi:10.1109/IEEECONF35879.2020.9329462 Google Scholar
16. Zhang, J., Y. Liu, Y. Jia, and R. Zhang, "High-gain Fabry-Perot antenna with reconfigurable scattering patterns based on varactor diodes," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 2, 922-930, 2022.
doi:10.1109/TAP.2021.3111234 Google Scholar
17. Bai, L., X. G. Zhang, Q. Wang, C. X. Huang, W. X. Jiang, and T. J. Cui, "Dual-band reconfigurable metasurface-assisted Fabry-Perot antenna with high-gain radiation and low scattering," IET Microw. Antennas Propag., Vol. 14, 1933-1942, 2020.
doi:10.1049/iet-map.2020.0415 Google Scholar
18. Burokur, S. N., J. P. Daniel, P. Ratajczak, and A. de Lustrac, "Tunable bilayered metasurface for frequency reconfigurable directive emissions," Appl. Phys. Lett., Vol. 97, 064101, 2010.
doi:10.1063/1.3478214 Google Scholar
19. Zhou, E., Y. Cheng, F. Chen, and H. Luo, "Wideband and high-gain patch antenna with reflective focusing metasurface," AEU --- International Journal of Electronics and Communications, Vol. 134, 153709, 2021.
doi:10.1016/j.aeue.2021.153709 Google Scholar
20. Wang, J., Y. Cheng, H. Luo, F. Chen, and L. Wu, "High-gain bidirectional radiative circularly polarized antenna based on focusing metasurface," AEU --- International Journal of Electronics and Communications, Vol. 151, 154222, 2022.
doi:10.1016/j.aeue.2022.154222 Google Scholar
21. Chen, X., T. Grzegorczyk, B.-I. Wu, J. Pacheco, Jr., and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterial," Phys. Rev. E, Vol. 70, 016608, 2004.
doi:10.1103/PhysRevE.70.016608 Google Scholar
22. Chen, Y. F., P. Fischer, and F. W. Wise, "Negative refraction at optical frequencies in nonmagnetic two-component molecular media," Phys. Rev. Lett., Vol. 95, No. 6, 067402, 2005.
doi:10.1103/PhysRevLett.95.067402 Google Scholar
23. Balanis, C. A., Antenna Theory: Analysis and Design, Vol. 4th, John Wiley & Sons, 2016.
24. Skyworks, , SMP1320 Series: Low Resistance, Low Capacitance, Plastic Packaged PIN Diodes, 200047S, Nov. 2018.