1. Steinhauer, L. and D. Quimby, "Advances in laser solenoid fusion reactor design," The Technology of Controlled Nuclear Fusion: Proceedings of the Third Topical Meeting on the Technology of Controlled Nuclear Fusion, Vol. 1, 121, National Technical Information Service, Santa Fe, New Mexico, May 9-11, 1978. Google Scholar
2. Tobita, K., S. Nishio, M. Sato, S. Sakurai, T. Hayashi, Y. Shibama, T. Isono, M. Enoeda, H. Nakamura, S. Sato, et al. "Slimcs-compact low aspect ratio demo reactor with reducedsize central solenoid," Nuclear Fusion, Vol. 47, No. 8, 892, 2007. Google Scholar
3. Engström, C., T. Berlind, J. Birch, L. Hultman, I. Ivanov, S. Kirkpatrick, and S. Rohde, "Design, plasma studies, and ion assisted thin film growth in an unbalanced dual target magnetron sputtering system with a solenoid coil," Vacuum, Vol. 56, No. 2, 107-113, 2000. Google Scholar
4. Zhang, X., J. Xiao, Z. Pei, J. Gong, and C. Sun, "Influence of the external solenoid coil arrangement and excitation mode on plasma characteristics and target utilization in a dc-planar magnetron sputtering system," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Vol. 25, No. 2, 209-214, 2007. Google Scholar
5. Karino, T., M. Okamura, T. Kanesue, S. Ikeda, and S. Kawata, "Plasma instability inside solenoid with laser ion source," Review of Scientific Instruments, Vol. 91, No. 5, 053303, 2020. Google Scholar
6. Schröder, G., "Fast pulsed magnet systems," Handbook of Accelerator Physics and Engineering, A. W. Chao and M. Tigner, eds., No. CERN-SL-98-017-BT, Ch. 3, 460-466, World Scientific, Singapore, 1999. Google Scholar
7. Wong, L. J., K.-H. Hong, S. Carbajo, A. Fallahi, P. Piot, M. Soljacić, J. D. Joannopoulos, F. X. Kärtner, and I. Kaminer, "Laser-induced linear-field particle acceleration in free space," Scientific Reports, Vol. 7, No. 1, 11159, 2017. Google Scholar
8. Arnaudon, L., P. Baudrenghien, C. Bertone, Y. Body, J. Broere, O. Brunner, M. Buzio, C. Carli, F. Caspers, J. Corso, J. Coupard, A. Dallocchio, N. Dos Santos, R. Garoby, F. Gerigk, L. Hammouti, K. Hanke, M. Jones, I. Kozsar, J. Lettry, J. Lallement, A. Lombardi, L. Lopez-Hernandez, C. Maglioni, S. Mathot, S. Maury, B. Mikulec, D. Nisbet, C. Noels, M. Paoluzzi, B. Puccio, U. Raich, S. Ramberger, C. Rossi, N. Schwerg, R. Scrivens, G. Vandoni, S. Weisz, J. Vollaire, M. Vretenar, and T. Zickler, "The LINAC4 Project at CERN,", 4, Aug. 2011. Google Scholar
9. Dattoli, G., L. Mezi, and M. Migliorati, "Operational methods for integro-differential equations and applications to problems in particle accelerator physics," Taiwanese Journal of Mathematics, 407-413, 2007. Google Scholar
10. Karamyshev, O., C.Welsch, and D. Newton, "Optimization of low energy electrostatic beam lines," Proceedings of IPAC2014, 2014. Google Scholar
11. Papash, A., A. Smirnov, and C. Welsch, "Nonlinear and long-term beam dynamics in low energy storage rings," Physical Review Special Topics --- Accelerators and Beams, Vol. 16, No. 6, 060101, 2013. Google Scholar
12. Maher, S., F. P. Jjunju, and S. Taylor, "Colloquium: 100 years of mass spectrometry: Perspectives and future trends," Reviews of Modern Physics, Vol. 87, No. 1, 113, 2015. Google Scholar
13. Taminger, K. M., W. H. Hofmeister, and R. A. Halfey, "Use of beam deflection to control an electron beam wire deposition process,", US Patent 8,344,281, Jan. 2013. Google Scholar
14. Koleva, E., V. Dzharov, V. Gerasimov, K. Tsvetkov, and G. Mladenov, "Electron beam delfection control system of a welding and surface modification installation," Journal of Physics: Conference Series, Vol. 992, 012013, IOP Publishing, 2018. Google Scholar
15. Kasisomayajula, V., M. Booty, A. Fiory, and N. Ravindra, "Magnetic field assisted heterogeneous device assembly," Supplemental Proceedings: Materials Processing and Interfaces, Vol. 1, 651-661, 2012. Google Scholar
16. Fernández-Morán, H., "Electron microscopy with high-field superconducting solenoid lenses," Proceedings of the National Academy of Sciences of the United States of America, Vol. 53, No. 2, 445, 1965. Google Scholar
17. Fernández-Morán, H., "High-resolution electron microscopy with superconducting lenses at liquid helium temperatures," Proceedings of the National Academy of Sciences of the United States of America, Vol. 56, No. 3, 801, 1966. Google Scholar
18. Bordelon, D. E., R. C. Goldstein, V. S. Nemkov, A. Kumar, J. K. Jackowski, T. L. De-Weese, and R. Ivkov, "Modified solenoid coil that efficiently produces high amplitude ac magnetic fields with enhanced uniformity for biomedical applications," IEEE Transactions on Magnetics, Vol. 48, No. 1, 47-52, 2011. Google Scholar
19. Drees, J. and H. Piel, "Particle beam treatment system with solenoid magnets,", US Patent App. 15/203,966, Jan. 12 2017. Google Scholar
20. Berz, M., B. Erdélyi, and K. Makino, "Fringe field effects in small rings of large acceptance," Physical Review Special Topics --- Accelerators and Beams, Vol. 3, No. 12, 124001, 2000. Google Scholar
21. Makino, K. and M. Berz, "Solenoid elements in cosy infinity," Institute of Physics CS, Vol. 175, 219-228, 2004. Google Scholar
22. Aslaninejad, M., C. Bontoiu, J. Pasternak, J. Pozimski, and A. Bogacz, "Solenoid fringe field effects for the neutrino factory linac-mad-x investigation," Tech. Rep., Thomas Jefferson National Accelerator Facility, Newport News, VA (United States), 2010. Google Scholar
23. Gorlov, T. and J. Holmes, "Fringe field effect of solenoids," 9th International Particle Accelerator Conference (IPAC2018), IPAC, 3385-3387, JaCoW Publishing, Vancouver, BC, Canada, 2018. Google Scholar
24. Migliorati, M. and G. Dattoli, "Transport matrix of a solenoid with linear fringe field," Il Nuovo Cimento della Società Italiana di Fisica-B: General Physics, Relativity, Astronomy and Mathematical Physics and Methods, Vol. 124, No. 4, 385, 2009. Google Scholar
25. Cebron, D., "Magnetic fields of solenoids and magnets,", https://www.mathworks.com/matlabcentral/fileexchange/71881-magnetic-fields-of-solenoids-and-magnets, 2019, Retrieved Sept. 26, 2019. Google Scholar
26. Derby, N. and S. Olbert, "Cylindrical magnets and ideal solenoids," American Journal of Physics, Vol. 78, No. 3, 229-235, 2010. Google Scholar
27. Callaghan, E. E. and S. H. Maslen, "The magnetic field of a finite solenoid," Tech. Rep., NASA, 1960. Google Scholar
28. Lerner, L., "Magnetic field of a finite solenoid with a linear permeable core," American Journal of Physics, Vol. 79, No. 10, 1030-1035, 2011. Google Scholar
29. Muniz, S. R., V. S. Bagnato, and M. Bhattacharya, "Analysis of off-axis solenoid fields using the magnetic scalar potential: An application to a zeeman-slower for cold atoms," American Journal of Physics, Vol. 83, No. 6, 513-517, 2015. Google Scholar
30. Lim, M. X. and H. Greenside, "The external magnetic field created by the superposition of identical parallel finite solenoids," American Journal of Physics, Vol. 84, No. 8, 606-615, 2016. Google Scholar
31. Arpaia, P., B. Celano, L. De Vito, A. Esposito, A. Parrella, and A. Vannozzi, "Measuring the magnetic axis alignment during solenoids working," Scientific Reports, Vol. 8, No. 1, 11426, 2018. Google Scholar
32. Arpaia, P., L. De Vito, A. Esposito, A. Parrella, and A. Vannozzi, "On-field monitoring of the magnetic axis misalignment in multi-coils solenoids," Journal of Instrumentation, Vol. 13, No. 08, P08017, 2018. Google Scholar
33. Arpaia, P., B. Celano, L. De Vito, A. Esposito, N. Moccaldi, and A. Parrella, "Monitoring the magnetic axis misalignment in axially-symmetric magnets," 2018 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), 1-6, IEEE, 2018. Google Scholar
34. Read, F. H. and N. J. Bowring, "The cpo programs and the bem for charged particle optics," Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 645, No. 1, 273-277, 2011. Google Scholar
35. Smith, R. T., F. P. Jjunju, and S. Maher, "Evaluation of electron beam deflections across a solenoid using Weber-Ritz and Maxwell-Lorentz electrodynamics," Progress In Electromagnetics Research, Vol. 151, 83-93, 2015. Google Scholar
36. Smith, R. T. and S. Maher, "Investigating electron beam deflections by a long straight wire carrying a constant current using direct action, emission-based and field theory approaches of electrodynamics," Progress In Electromagnetics Research B, Vol. 75, 79-89, 2017. Google Scholar
37. Baumgärtel, C., R. T. Smith, and S. Maher, "Accurately predicting electron beam deflections in fringing fields of a solenoid," Scientific Reports, Vol. 10, No. 1, 1-13, 2020. Google Scholar
38. Smith, R. T., S. Taylor, and S. Maher, "Modelling electromagnetic induction via accelerated electron motion," Canadian Journal of Physics, Vol. 93, No. 7, 802-806, 2014. Google Scholar
39. Smith, R. T., F. P. Jjunju, I. S. Young, S. Taylor, and S. Maher, "A physical model for low-frequency electromagnetic induction in the near field based on direct interaction between transmitter and receiver electrons," Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 472, No. 2191, 20160338, 2016. Google Scholar
40. Baumgärtel, C. and S. Maher, "A novel model of unipolar induction phenomena based on direct interaction between conductor charges," Progress In Electromagnetics Research, Vol. 171, 123-135, 2021. Google Scholar
41. Assis, A. and M. Tajmar, "Superconductivity with weber's electrodynamics: The london moment and the meissner effect," Annales de la Fondation Louis de Broglie, Vol. 42, 307, 2017. Google Scholar
42. Prytz, K. A., "Meissner effect in classical physics," Progress In Electromagnetics Research M, Vol. 64, 1-7, 2018. Google Scholar
43. Torres-Silva, H., J. Lόpez-Bonilla, R. Lόpez-Vázquez, and J. Rivera-Rebolledo, "Weber's electrodynamics for the hydrogen atom," Indonesian Journal of Applied Physics, Vol. 5, No. 01, 39-46, 2015. Google Scholar
44. Frauenfelder, U. and J. Weber, "The fine structure of Weber's hydrogen atom: Bohr-sommerfeld approach," Zeitschrift für angewandte Mathematik und Physik, Vol. 70, No. 4, 105, 2019. Google Scholar
45. Tajmar, M., "Derivation of the planck and fine-structure constant from Assis's gravity model," Journal of Advanced Physics, Vol. 4, No. 3, 219-221, 2015. Google Scholar
46. Baumgärtel, C. and M. Tajmar, "The planck constant and the origin of mass due to a higher order casimir effect," Journal of Advanced Physics, Vol. 7, No. 1, 135-140, 2018. Google Scholar
47. Weber, W. E., Wilhelm Weber's Werke,, Vol. 3 (First part), Julius Springer, Berlin, 1893.
48. Maxwell, J. C., "Xxv. on physical lines of force: Part i. --- The theory of molecular vortices applied to magnetic phenomena," The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, Vol. 21, No. 139, 161-175, 1861. Google Scholar
49. Maxwell, J. C., A Treatise on Electricity and Magnetism Unabridged, Dover, 1954.
50. Yaghjian, A., "Reflections on Maxwell's treatise," Progress In Electromagnetics Research, Vol. 149, 217-249, 2014. Google Scholar
51. Assis, A. K. T., Weber's Electrodynamics, 47-77, Springer, Dordrecht, 1994.
52. Kinzer, E. and J. Fukai, "Weber's force and Maxwell's equations," Foundations of Physics Letters, Vol. 9, No. 5, 457-461, 1996. Google Scholar
53. O'Rahilly, A., Electromagnetic Theory: A Critical Examination of Fundamentals, Vol. I and II, Dover Publications, 1965.
54. Wesley, J. P., "Weber electrodynamics, Part I. General theory, steady current effects," Foundations of Physics Letters, Vol. 3, No. 5, 443-469, 1990. Google Scholar
55. Li, Q., "Electric field theory based on Weber's electrodynamics," International Journal of Magnetics and Electromagnetism, Vol. 7:039, No. 2, 1-6, 2021. Google Scholar
56. Slepian, J., "Lines of force in electric and magnetic fields," American Journal of Physics, Vol. 19, No. 2, 87-90, 1951. Google Scholar
57. Mendes, R., L. Malacarne, and A. Assis, Virial Theorem For Weber's Law, 67-70, Rinton Press, Paramus, 2004.