1. Goudos, S., I. P. Dallas, S. Chatziefthymiou, and S. Kyriazakos, "A survey of IoT key enabling and future technologies: 5G, mobile IoT, sematic web and applications," Wireless Personal Communications, Vol. 97, No. 2, 1645-1675, 2017.
doi:10.1007/s11277-017-4647-8 Google Scholar
2. Ebling, M., "Pervasive computing and the Internet of Things," IEEE Pervasive Computing, Vol. 15, No. 1, 2-4, 2016.
doi:10.1109/MPRV.2016.7 Google Scholar
3. Fu, S., X. Zhao, C. Li, and Z. Wang, "A low-profile dual-band dual-polarized dipole antenna for 5G communication applications," Progress In Electromagnetics Research Letters, Vol. 104, 131-137, 2022.
doi:10.2528/PIERL22051005 Google Scholar
4. Jangid, M., Jaiverdhan, S. Yadav, and M. M. Sharma, "A CPW fed cross-shaped dual-band circularly polarized monopole antenna with strip/stub/slot resonator loadings," Progress In Electromagnetics Research M, Vol. 109, 113-123, 2022.
doi:10.2528/PIERM21122206 Google Scholar
5. Wang, W. and G. Sun, "A dual-band circularly polarized antenna with "X" parastic structures," Progress In Electromagnetics Research Letters, Vol. 103, 89-97, 2022.
doi:10.2528/PIERL21110804 Google Scholar
6. Jamshed, M. A., T. W. C. Brown, and F. Heliot, "Dual band two element rim based MIMO antennas with coupling manipulation for low SAR mobile handsets," Progress In Electromagnetics Research C, Vol. 119, 125-134, 2022.
doi:10.2528/PIERC22022103 Google Scholar
7. Anguera, J., A. Andujar, J. Jayasinghe, V. V. S. S. S. Chakravarthy, P. S. R. Chowdary, J. L. Pijoan, T. Ali, and C. Cattani, "Fractal antennas: An historical perspective," Fractal and Fractional, Vol. 4, No. 1, 3, 2020.
doi:10.3390/fractalfract4010003 Google Scholar
8. Werner, D. H. and S. Ganguly, "An overview of fractal antenna engineering research," IEEE Antennas Propag. Mag., Vol. 45, No. 1, 38-57, Feb. 2003.
doi:10.1109/MAP.2003.1189650 Google Scholar
9. Chaudhary, A. K. and M. Manohar, "A modified SWB hexagonal fractal spatial diversity antenna with high isolation using meander line approach," IEEE Access, Vol. 10, 10238-10250, 2022.
doi:10.1109/ACCESS.2022.3144850 Google Scholar
10. Liu, G., L. Xu, and Z. Wu, "Dual-band microstrip RFID antenna with tree-like fractal structure," IEEE Antennas Wireless Propag. Lett., Vol. 12, 976-978, 2013.
doi:10.1109/LAWP.2013.2276933 Google Scholar
11. Velan, S., E. F. Sundarsingh, M. Kanagasabai, A. K. Sarma, C. Raviteja, R. Sivasamy, and J. K. Pakkathillam, "Dual-band EBG integrated monopole antenna deploying fractal geometry for wearable applications," IEEE Antennas Wireless Propag. Lett., Vol. 14, 249-252, 2015.
doi:10.1109/LAWP.2014.2360710 Google Scholar
12. Peristerianos, A., A. Theopoulos, A. G. Koutinos, T. Kaifas, and K. Siakavara, "Dual-band fractal semi-printed element antenna arrays for MIMO applications," IEEE Antennas Wireless Propag. Lett., Vol. 15, 730-733, 2016.
doi:10.1109/LAWP.2015.2470681 Google Scholar
13. Dhar, S., R. Ghatak, B. Gupta, and D. R. Poddar, "A wideband Minkowski fractal dielectric resonator antenna," IEEE Trans. Antennas Propag., Vol. 61, No. 6, 2895-2903, Jun. 2013.
doi:10.1109/TAP.2013.2251596 Google Scholar
14. Dhar, S., K. Patra, R. Ghatak, B. Gupta, and D. R. Poddar, "A dielectric resonator-loaded Minkowski fractal-shaped slot loop heptaband antenna," IEEE Trans. Antennas Propag., Vol. 63, No. 4, 1521-1529, Apr. 2015.
doi:10.1109/TAP.2015.2393869 Google Scholar
15. Salucci, M., N. Anselmi, S. K. Goudos, and A. Massa, "Fast design of multiband fractal antennas through a system-by-design approach for NB-IoT applications," EURASIP J. Wirel. Comm. Netw., Vol. 2019, No. 1, 68-83, Mar. 2019.
doi:10.1186/s13638-019-1386-4 Google Scholar
16. Viani, F., M. Salucci, F. Robol, G. Oliveri, and A. Massa, "Design of a UHF RFID/GPS fractal antenna for logistics management," Journal of Electromagnetic Waves and Applications, Vol. 26, 480-492, 2012.
doi:10.1163/156939312800030640 Google Scholar
17. Viani, F., M. Salucci, F. Robol, and A. Massa, "Multiband fractal ZigBee/WLAN antenna for ubiquitous wireless environments," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 11-12, 1554-1562, 2012.
doi:10.1080/09205071.2012.704553 Google Scholar
18. Goudos, S., Emerging Evolutionary Algorithms for Antennas and Wireless Communications, SciTech Publishing Inc., 2021.
19. Goudos, S. K., K. Siakavara, T. Samaras, E. E. Vafiadis, and J. N. Sahalos, "Self-adaptive differential evolution applied to real-valued antenna and microwave design problems," IEEE Trans. Antennas Propag., Vol. 59, No. 4, 1286-1298, Apr. 2011. Google Scholar
20. Goudos, S. K., C. Kalialakis, and R. Mittra, "Evolutionary algorithms applied to antennas and propagation: A review of state of the art," Int. J. Antennas Propag., Vol. 2016, 1-12, Jan. 2016. Google Scholar
21. Boursianis, A. D., M. S. Papadopoulou, M. Salucci, A. Polo, P. Sarigiannidis, K. Psannis, S. Mirjalili, S. Koulouridis, and S. K. Goudos, "Emerging swarm intelligence algorithms and their applications in antenna design: The GWO, WOA, and SSA optimizers," Appl. Sciences, Vol. 2021, No. 11, 1-27, Sep. 2021. Google Scholar
22. Campbell, S. D., R. P. Jenkins, P. J. O'Connor, and D. Werner, "The explosion of artificial intelligence in antennas and propagation: How deep learning is advancing our state of the art," IEEE Antennas Propag. Mag., Vol. 63, No. 3, 16-27, Jun. 2021. Google Scholar
23. Massa, A., G. Oliveri, M. Salucci, N. Anselmi, and P. Rocca, "Learning-by-examples techniques as applied to electromagnetics," Journal of Electromagnetic Waves and Applications, Vol. 32, No. 4, 516-541, 2018. Google Scholar
24. Cui, L., Y. Zhang, R. Zhang, and Q. H. Liu, "A modified efficient KNN method for antenna optimization and design," IEEE Trans. Antennas Propag., Vol. 68, No. 10, 6858-6866, Oct. 2020. Google Scholar
25. Toktas, A., D. Ustun, and M. Tekbas, "Multi-ojective design of multi-layer radar absorber using surrogate-based optimization," IEEE Trans. Microw. Theory Techn., Vol. 67, No. 8, 3318-3329, Aug. 2019. Google Scholar
26. Wu, Q., W. Chen, C. Yu, H. Wang, and W. Hong, "Multilayer machine learning-assisted optimization-based robust design and its applications to antennas and array," IEEE Trans. Antennas Propag., Vol. 69, No. 9, 6052-6057, Sep. 2021. Google Scholar
27. Massa, A. and M. Salucci, "On the design of complex EM devices and systems through the System- by-Design paradigm --- A framework for dealing with the computational complexity," IEEE Trans. Antennas Propag., Vol. 70, No. 2, 1328-1343, Feb. 2022. Google Scholar
28. Salucci, M., G. Oliveri, M. A. Hannan, and A. Massa, "System-by-Design paradigm-based synthesis of complex systems: The case of spline-contoured 3D radomes," IEEE Antennas Propag. Mag., Vol. 64, No. 1, 72-83, Feb. 2022. Google Scholar
29. Oliveri, G., A. Gelmini, A. Polo, N. Anselmi, and A. Massa, "System-by-design multi-scale synthesis of task-oriented reflectarrays," IEEE Trans. Antennas Propag., Vol. 68, No. 4, 2867-2882, Apr. 2020. Google Scholar
30. Oliveri, G., M. Salucci, N. Anselmi, and A. Massa, "Multi-scale system-by-design synthesis of printed WAIMs for waveguide array enhancement," IEEE J. Multiscale Multiphys. Comput. Tech., Vol. 2, 84-96, Jun. 2017. Google Scholar
31. Oliveri, G., F. Viani, N. Anselmi, and A. Massa, "Synthesis of multi-layer WAIM coatings for planar phased arrays within the system-by-design framework," IEEE Trans. Antennas Propag., Vol. 63, No. 6, 2482-2496, Jun. 2015. Google Scholar
32. Oliveri, G., A. Polo, M. Salucci, G. Gottardi, and A. Massa, "SbD-based synthesis of low-profile WAIM superstrates for printed patch arrays," IEEE Trans. Antennas Propag., Vol. 69, No. 7, 3849-3862, Jul. 2021. Google Scholar
33. Oliveri, G., M. Salucci, R. Lombardi, R. Flamini, C. Mazzucco, S. Verzura, and A. Massa, "Wide-angle impedance matching layer-enhanced dual-polarization sub-6 GHz wide-scan array for next generation base stations," IEEE Trans. Antennas Propag., 2022. Google Scholar
34. Salucci, M., L. Tenuti, G. Gottardi, M. A. Hannan, and A. Massa, "A System-by-Design method for efficient linear array miniaturization through low-complexity isotropic lenses," Electron. Lett., Vol. 55, No. 8, 433-434, Apr. 2019. Google Scholar
35. Arnieri, E., M. Salucci, F. Greco, L. Boccia, A. Massa, and G. Amendola, "An equivalent circuit/system-by-design approach to the design of reflection-type dual-band circular polarizers," IEEE Trans. Antennas Propag., Vol. 70, No. 3, 2364-2369, Mar. 2022. Google Scholar
36. Oliveri, G., P. Rocca, M. Salucci, and A. Massa, "Holographic smart EM skins for advanced beam power shaping in next generation wireless environments," IEEE J. Multiscale Multiphys. Comput. Tech., Vol. 6, 171-182, Oct. 2021. Google Scholar
37. Oliveri, G., F. Zardi, P. Rocca, M. Salucci, and A. Massa, "Building a smart EM environment --- AI-enhanced aperiodic micro-scale design of passive EM skins," IEEE Trans. Antennas Propag., 2022. Google Scholar
38. Ghouz, H. H. M., M. F. Abo Sree, and M. Aly Ibrahim, "Novel wideband microstrip monopole antenna designs for WiFi/LTE/WiMax devices," IEEE Access, Vol. 8, 9532-9539, 2020. Google Scholar
39. Sediq, H. and Y. Mohammed, "Performance analysis of novel multi-band monopole antenna for various broadband wireless applications," Wireless Personal Communications, Vol. 112, No. 1, 571-585, 2020. Google Scholar
40. Contreras-Lizarraga, A., et al., "A high-performance antenna-plexer for mobile devices," 2020 IEEE International Ultrasonics Symposium (IUS), 1-3, 2020. Google Scholar
41. QORVO "Through the 5G antenna design maze with antenna-plexers,", 1-7, Oct. 2020, [Online], available: https://www.qorvo.com/resources/d/qorvo-through-5g-antenna-design-maze-with-antenna-plexer-white-paper. Google Scholar