Vol. 114
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-11-24
SBD Synthesis of Dual-Band Perturbed Minkowski Monopole Fractal Antennas
By
Progress In Electromagnetics Research M, Vol. 114, 153-163, 2022
Abstract
An innovative methodology for the design of dual-band microstrip monopole antennas is presented in this work. It leverages on the unconventional modeling of the radiator shape based on the perturbed Minkowski fractal in order to fit arbitrarily-defined resonances. A System-by-Design (SbD) technique is exploited to solve the arising global optimization problem with high computational efficiency. Representative benchmarks are reported to assess the effectiveness, reliability, and efficiency of the proposed synthesis approach.
Citation
Lorenzo Poli Arianna Benoni , "SBD Synthesis of Dual-Band Perturbed Minkowski Monopole Fractal Antennas," Progress In Electromagnetics Research M, Vol. 114, 153-163, 2022.
doi:10.2528/PIERM22061804
http://www.jpier.org/PIERM/pier.php?paper=22061804
References

1. Goudos, S., I. P. Dallas, S. Chatziefthymiou, and S. Kyriazakos, "A survey of IoT key enabling and future technologies: 5G, mobile IoT, sematic web and applications," Wireless Personal Communications, Vol. 97, No. 2, 1645-1675, 2017.
doi:10.1007/s11277-017-4647-8

2. Ebling, M., "Pervasive computing and the Internet of Things," IEEE Pervasive Computing, Vol. 15, No. 1, 2-4, 2016.
doi:10.1109/MPRV.2016.7

3. Fu, S., X. Zhao, C. Li, and Z. Wang, "A low-profile dual-band dual-polarized dipole antenna for 5G communication applications," Progress In Electromagnetics Research Letters, Vol. 104, 131-137, 2022.
doi:10.2528/PIERL22051005

4. Jangid, M., Jaiverdhan, S. Yadav, and M. M. Sharma, "A CPW fed cross-shaped dual-band circularly polarized monopole antenna with strip/stub/slot resonator loadings," Progress In Electromagnetics Research M, Vol. 109, 113-123, 2022.
doi:10.2528/PIERM21122206

5. Wang, W. and G. Sun, "A dual-band circularly polarized antenna with "X" parastic structures," Progress In Electromagnetics Research Letters, Vol. 103, 89-97, 2022.
doi:10.2528/PIERL21110804

6. Jamshed, M. A., T. W. C. Brown, and F. Heliot, "Dual band two element rim based MIMO antennas with coupling manipulation for low SAR mobile handsets," Progress In Electromagnetics Research C, Vol. 119, 125-134, 2022.
doi:10.2528/PIERC22022103

7. Anguera, J., A. Andujar, J. Jayasinghe, V. V. S. S. S. Chakravarthy, P. S. R. Chowdary, J. L. Pijoan, T. Ali, and C. Cattani, "Fractal antennas: An historical perspective," Fractal and Fractional, Vol. 4, No. 1, 3, 2020.
doi:10.3390/fractalfract4010003

8. Werner, D. H. and S. Ganguly, "An overview of fractal antenna engineering research," IEEE Antennas Propag. Mag., Vol. 45, No. 1, 38-57, Feb. 2003.
doi:10.1109/MAP.2003.1189650

9. Chaudhary, A. K. and M. Manohar, "A modified SWB hexagonal fractal spatial diversity antenna with high isolation using meander line approach," IEEE Access, Vol. 10, 10238-10250, 2022.
doi:10.1109/ACCESS.2022.3144850

10. Liu, G., L. Xu, and Z. Wu, "Dual-band microstrip RFID antenna with tree-like fractal structure," IEEE Antennas Wireless Propag. Lett., Vol. 12, 976-978, 2013.
doi:10.1109/LAWP.2013.2276933

11. Velan, S., E. F. Sundarsingh, M. Kanagasabai, A. K. Sarma, C. Raviteja, R. Sivasamy, and J. K. Pakkathillam, "Dual-band EBG integrated monopole antenna deploying fractal geometry for wearable applications," IEEE Antennas Wireless Propag. Lett., Vol. 14, 249-252, 2015.
doi:10.1109/LAWP.2014.2360710

12. Peristerianos, A., A. Theopoulos, A. G. Koutinos, T. Kaifas, and K. Siakavara, "Dual-band fractal semi-printed element antenna arrays for MIMO applications," IEEE Antennas Wireless Propag. Lett., Vol. 15, 730-733, 2016.
doi:10.1109/LAWP.2015.2470681

13. Dhar, S., R. Ghatak, B. Gupta, and D. R. Poddar, "A wideband Minkowski fractal dielectric resonator antenna," IEEE Trans. Antennas Propag., Vol. 61, No. 6, 2895-2903, Jun. 2013.
doi:10.1109/TAP.2013.2251596

14. Dhar, S., K. Patra, R. Ghatak, B. Gupta, and D. R. Poddar, "A dielectric resonator-loaded Minkowski fractal-shaped slot loop heptaband antenna," IEEE Trans. Antennas Propag., Vol. 63, No. 4, 1521-1529, Apr. 2015.
doi:10.1109/TAP.2015.2393869

15. Salucci, M., N. Anselmi, S. K. Goudos, and A. Massa, "Fast design of multiband fractal antennas through a system-by-design approach for NB-IoT applications," EURASIP J. Wirel. Comm. Netw., Vol. 2019, No. 1, 68-83, Mar. 2019.
doi:10.1186/s13638-019-1386-4

16. Viani, F., M. Salucci, F. Robol, G. Oliveri, and A. Massa, "Design of a UHF RFID/GPS fractal antenna for logistics management," Journal of Electromagnetic Waves and Applications, Vol. 26, 480-492, 2012.
doi:10.1163/156939312800030640

17. Viani, F., M. Salucci, F. Robol, and A. Massa, "Multiband fractal ZigBee/WLAN antenna for ubiquitous wireless environments," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 11-12, 1554-1562, 2012.
doi:10.1080/09205071.2012.704553

18. Goudos, S., Emerging Evolutionary Algorithms for Antennas and Wireless Communications, SciTech Publishing Inc., Stevenage, 2021.

19. Goudos, S. K., K. Siakavara, T. Samaras, E. E. Vafiadis, and J. N. Sahalos, "Self-adaptive differential evolution applied to real-valued antenna and microwave design problems," IEEE Trans. Antennas Propag., Vol. 59, No. 4, 1286-1298, Apr. 2011.

20. Goudos, S. K., C. Kalialakis, and R. Mittra, "Evolutionary algorithms applied to antennas and propagation: A review of state of the art," Int. J. Antennas Propag., Vol. 2016, 1-12, Jan. 2016.

21. Boursianis, A. D., M. S. Papadopoulou, M. Salucci, A. Polo, P. Sarigiannidis, K. Psannis, S. Mirjalili, S. Koulouridis, and S. K. Goudos, "Emerging swarm intelligence algorithms and their applications in antenna design: The GWO, WOA, and SSA optimizers," Appl. Sciences, Vol. 2021, No. 11, 1-27, Sep. 2021.

22. Campbell, S. D., R. P. Jenkins, P. J. O'Connor, and D. Werner, "The explosion of artificial intelligence in antennas and propagation: How deep learning is advancing our state of the art," IEEE Antennas Propag. Mag., Vol. 63, No. 3, 16-27, Jun. 2021.

23. Massa, A., G. Oliveri, M. Salucci, N. Anselmi, and P. Rocca, "Learning-by-examples techniques as applied to electromagnetics," Journal of Electromagnetic Waves and Applications, Vol. 32, No. 4, 516-541, 2018.

24. Cui, L., Y. Zhang, R. Zhang, and Q. H. Liu, "A modified efficient KNN method for antenna optimization and design," IEEE Trans. Antennas Propag., Vol. 68, No. 10, 6858-6866, Oct. 2020.

25. Toktas, A., D. Ustun, and M. Tekbas, "Multi-ojective design of multi-layer radar absorber using surrogate-based optimization," IEEE Trans. Microw. Theory Techn., Vol. 67, No. 8, 3318-3329, Aug. 2019.

26. Wu, Q., W. Chen, C. Yu, H. Wang, and W. Hong, "Multilayer machine learning-assisted optimization-based robust design and its applications to antennas and array," IEEE Trans. Antennas Propag., Vol. 69, No. 9, 6052-6057, Sep. 2021.

27. Massa, A. and M. Salucci, "On the design of complex EM devices and systems through the System- by-Design paradigm --- A framework for dealing with the computational complexity," IEEE Trans. Antennas Propag., Vol. 70, No. 2, 1328-1343, Feb. 2022.

28. Salucci, M., G. Oliveri, M. A. Hannan, and A. Massa, "System-by-Design paradigm-based synthesis of complex systems: The case of spline-contoured 3D radomes," IEEE Antennas Propag. Mag., Vol. 64, No. 1, 72-83, Feb. 2022.

29. Oliveri, G., A. Gelmini, A. Polo, N. Anselmi, and A. Massa, "System-by-design multi-scale synthesis of task-oriented reflectarrays," IEEE Trans. Antennas Propag., Vol. 68, No. 4, 2867-2882, Apr. 2020.

30. Oliveri, G., M. Salucci, N. Anselmi, and A. Massa, "Multi-scale system-by-design synthesis of printed WAIMs for waveguide array enhancement," IEEE J. Multiscale Multiphys. Comput. Tech., Vol. 2, 84-96, Jun. 2017.

31. Oliveri, G., F. Viani, N. Anselmi, and A. Massa, "Synthesis of multi-layer WAIM coatings for planar phased arrays within the system-by-design framework," IEEE Trans. Antennas Propag., Vol. 63, No. 6, 2482-2496, Jun. 2015.

32. Oliveri, G., A. Polo, M. Salucci, G. Gottardi, and A. Massa, "SbD-based synthesis of low-profile WAIM superstrates for printed patch arrays," IEEE Trans. Antennas Propag., Vol. 69, No. 7, 3849-3862, Jul. 2021.

33. Oliveri, G., M. Salucci, R. Lombardi, R. Flamini, C. Mazzucco, S. Verzura, and A. Massa, "Wide-angle impedance matching layer-enhanced dual-polarization sub-6 GHz wide-scan array for next generation base stations," IEEE Trans. Antennas Propag., 2022.

34. Salucci, M., L. Tenuti, G. Gottardi, M. A. Hannan, and A. Massa, "A System-by-Design method for efficient linear array miniaturization through low-complexity isotropic lenses," Electron. Lett., Vol. 55, No. 8, 433-434, Apr. 2019.

35. Arnieri, E., M. Salucci, F. Greco, L. Boccia, A. Massa, and G. Amendola, "An equivalent circuit/system-by-design approach to the design of reflection-type dual-band circular polarizers," IEEE Trans. Antennas Propag., Vol. 70, No. 3, 2364-2369, Mar. 2022.

36. Oliveri, G., P. Rocca, M. Salucci, and A. Massa, "Holographic smart EM skins for advanced beam power shaping in next generation wireless environments," IEEE J. Multiscale Multiphys. Comput. Tech., Vol. 6, 171-182, Oct. 2021.

37. Oliveri, G., F. Zardi, P. Rocca, M. Salucci, and A. Massa, "Building a smart EM environment --- AI-enhanced aperiodic micro-scale design of passive EM skins," IEEE Trans. Antennas Propag., 2022.

38. Ghouz, H. H. M., M. F. Abo Sree, and M. Aly Ibrahim, "Novel wideband microstrip monopole antenna designs for WiFi/LTE/WiMax devices," IEEE Access, Vol. 8, 9532-9539, 2020.

39. Sediq, H. and Y. Mohammed, "Performance analysis of novel multi-band monopole antenna for various broadband wireless applications," Wireless Personal Communications, Vol. 112, No. 1, 571-585, 2020.

40. Contreras-Lizarraga, A., et al., "A high-performance antenna-plexer for mobile devices," 2020 IEEE International Ultrasonics Symposium (IUS), 1-3, 2020.

41. QORVO, "Through the 5G antenna design maze with antenna-plexers,", 1-7, Oct. 2020, [Online], available: https://www.qorvo.com/resources/d/qorvo-through-5g-antenna-design-maze-with-antenna-plexer-white-paper.