Vol. 114
Latest Volume
All Volumes
PIERM 137 [2026] PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-11-24
SBD Synthesis of Dual-Band Perturbed Minkowski Monopole Fractal Antennas
By
Progress In Electromagnetics Research M, Vol. 114, 153-163, 2022
Abstract
An innovative methodology for the design of dual-band microstrip monopole antennas is presented in this work. It leverages on the unconventional modeling of the radiator shape based on the perturbed Minkowski fractal in order to fit arbitrarily-defined resonances. A System-by-Design (SbD) technique is exploited to solve the arising global optimization problem with high computational efficiency. Representative benchmarks are reported to assess the effectiveness, reliability, and efficiency of the proposed synthesis approach.
Citation
Lorenzo Poli, and Arianna Benoni, "SBD Synthesis of Dual-Band Perturbed Minkowski Monopole Fractal Antennas," Progress In Electromagnetics Research M, Vol. 114, 153-163, 2022.
doi:10.2528/PIERM22061804
References

1. Goudos, S., I. P. Dallas, S. Chatziefthymiou, and S. Kyriazakos, "A survey of IoT key enabling and future technologies: 5G, mobile IoT, sematic web and applications," Wireless Personal Communications, Vol. 97, No. 2, 1645-1675, 2017.
doi:10.1007/s11277-017-4647-8        Google Scholar

2. Ebling, M., "Pervasive computing and the Internet of Things," IEEE Pervasive Computing, Vol. 15, No. 1, 2-4, 2016.
doi:10.1109/MPRV.2016.7        Google Scholar

3. Fu, S., X. Zhao, C. Li, and Z. Wang, "A low-profile dual-band dual-polarized dipole antenna for 5G communication applications," Progress In Electromagnetics Research Letters, Vol. 104, 131-137, 2022.
doi:10.2528/PIERL22051005        Google Scholar

4. Jangid, M., Jaiverdhan, S. Yadav, and M. M. Sharma, "A CPW fed cross-shaped dual-band circularly polarized monopole antenna with strip/stub/slot resonator loadings," Progress In Electromagnetics Research M, Vol. 109, 113-123, 2022.
doi:10.2528/PIERM21122206        Google Scholar

5. Wang, W. and G. Sun, "A dual-band circularly polarized antenna with "X" parastic structures," Progress In Electromagnetics Research Letters, Vol. 103, 89-97, 2022.
doi:10.2528/PIERL21110804        Google Scholar

6. Jamshed, M. A., T. W. C. Brown, and F. Heliot, "Dual band two element rim based MIMO antennas with coupling manipulation for low SAR mobile handsets," Progress In Electromagnetics Research C, Vol. 119, 125-134, 2022.
doi:10.2528/PIERC22022103        Google Scholar

7. Anguera, J., A. Andujar, J. Jayasinghe, V. V. S. S. S. Chakravarthy, P. S. R. Chowdary, J. L. Pijoan, T. Ali, and C. Cattani, "Fractal antennas: An historical perspective," Fractal and Fractional, Vol. 4, No. 1, 3, 2020.
doi:10.3390/fractalfract4010003        Google Scholar

8. Werner, D. H. and S. Ganguly, "An overview of fractal antenna engineering research," IEEE Antennas Propag. Mag., Vol. 45, No. 1, 38-57, Feb. 2003.
doi:10.1109/MAP.2003.1189650        Google Scholar

9. Chaudhary, A. K. and M. Manohar, "A modified SWB hexagonal fractal spatial diversity antenna with high isolation using meander line approach," IEEE Access, Vol. 10, 10238-10250, 2022.
doi:10.1109/ACCESS.2022.3144850        Google Scholar

10. Liu, G., L. Xu, and Z. Wu, "Dual-band microstrip RFID antenna with tree-like fractal structure," IEEE Antennas Wireless Propag. Lett., Vol. 12, 976-978, 2013.
doi:10.1109/LAWP.2013.2276933        Google Scholar

11. Velan, S., E. F. Sundarsingh, M. Kanagasabai, A. K. Sarma, C. Raviteja, R. Sivasamy, and J. K. Pakkathillam, "Dual-band EBG integrated monopole antenna deploying fractal geometry for wearable applications," IEEE Antennas Wireless Propag. Lett., Vol. 14, 249-252, 2015.
doi:10.1109/LAWP.2014.2360710        Google Scholar

12. Peristerianos, A., A. Theopoulos, A. G. Koutinos, T. Kaifas, and K. Siakavara, "Dual-band fractal semi-printed element antenna arrays for MIMO applications," IEEE Antennas Wireless Propag. Lett., Vol. 15, 730-733, 2016.
doi:10.1109/LAWP.2015.2470681        Google Scholar

13. Dhar, S., R. Ghatak, B. Gupta, and D. R. Poddar, "A wideband Minkowski fractal dielectric resonator antenna," IEEE Trans. Antennas Propag., Vol. 61, No. 6, 2895-2903, Jun. 2013.
doi:10.1109/TAP.2013.2251596        Google Scholar

14. Dhar, S., K. Patra, R. Ghatak, B. Gupta, and D. R. Poddar, "A dielectric resonator-loaded Minkowski fractal-shaped slot loop heptaband antenna," IEEE Trans. Antennas Propag., Vol. 63, No. 4, 1521-1529, Apr. 2015.
doi:10.1109/TAP.2015.2393869        Google Scholar

15. Salucci, M., N. Anselmi, S. K. Goudos, and A. Massa, "Fast design of multiband fractal antennas through a system-by-design approach for NB-IoT applications," EURASIP J. Wirel. Comm. Netw., Vol. 2019, No. 1, 68-83, Mar. 2019.
doi:10.1186/s13638-019-1386-4        Google Scholar

16. Viani, F., M. Salucci, F. Robol, G. Oliveri, and A. Massa, "Design of a UHF RFID/GPS fractal antenna for logistics management," Journal of Electromagnetic Waves and Applications, Vol. 26, 480-492, 2012.
doi:10.1163/156939312800030640        Google Scholar

17. Viani, F., M. Salucci, F. Robol, and A. Massa, "Multiband fractal ZigBee/WLAN antenna for ubiquitous wireless environments," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 11-12, 1554-1562, 2012.
doi:10.1080/09205071.2012.704553        Google Scholar

18. Goudos, S., Emerging Evolutionary Algorithms for Antennas and Wireless Communications, SciTech Publishing Inc., 2021.

19. Goudos, S. K., K. Siakavara, T. Samaras, E. E. Vafiadis, and J. N. Sahalos, "Self-adaptive differential evolution applied to real-valued antenna and microwave design problems," IEEE Trans. Antennas Propag., Vol. 59, No. 4, 1286-1298, Apr. 2011.        Google Scholar

20. Goudos, S. K., C. Kalialakis, and R. Mittra, "Evolutionary algorithms applied to antennas and propagation: A review of state of the art," Int. J. Antennas Propag., Vol. 2016, 1-12, Jan. 2016.        Google Scholar

21. Boursianis, A. D., M. S. Papadopoulou, M. Salucci, A. Polo, P. Sarigiannidis, K. Psannis, S. Mirjalili, S. Koulouridis, and S. K. Goudos, "Emerging swarm intelligence algorithms and their applications in antenna design: The GWO, WOA, and SSA optimizers," Appl. Sciences, Vol. 2021, No. 11, 1-27, Sep. 2021.        Google Scholar

22. Campbell, S. D., R. P. Jenkins, P. J. O'Connor, and D. Werner, "The explosion of artificial intelligence in antennas and propagation: How deep learning is advancing our state of the art," IEEE Antennas Propag. Mag., Vol. 63, No. 3, 16-27, Jun. 2021.        Google Scholar

23. Massa, A., G. Oliveri, M. Salucci, N. Anselmi, and P. Rocca, "Learning-by-examples techniques as applied to electromagnetics," Journal of Electromagnetic Waves and Applications, Vol. 32, No. 4, 516-541, 2018.        Google Scholar

24. Cui, L., Y. Zhang, R. Zhang, and Q. H. Liu, "A modified efficient KNN method for antenna optimization and design," IEEE Trans. Antennas Propag., Vol. 68, No. 10, 6858-6866, Oct. 2020.        Google Scholar

25. Toktas, A., D. Ustun, and M. Tekbas, "Multi-ojective design of multi-layer radar absorber using surrogate-based optimization," IEEE Trans. Microw. Theory Techn., Vol. 67, No. 8, 3318-3329, Aug. 2019.        Google Scholar

26. Wu, Q., W. Chen, C. Yu, H. Wang, and W. Hong, "Multilayer machine learning-assisted optimization-based robust design and its applications to antennas and array," IEEE Trans. Antennas Propag., Vol. 69, No. 9, 6052-6057, Sep. 2021.        Google Scholar

27. Massa, A. and M. Salucci, "On the design of complex EM devices and systems through the System- by-Design paradigm --- A framework for dealing with the computational complexity," IEEE Trans. Antennas Propag., Vol. 70, No. 2, 1328-1343, Feb. 2022.        Google Scholar

28. Salucci, M., G. Oliveri, M. A. Hannan, and A. Massa, "System-by-Design paradigm-based synthesis of complex systems: The case of spline-contoured 3D radomes," IEEE Antennas Propag. Mag., Vol. 64, No. 1, 72-83, Feb. 2022.        Google Scholar

29. Oliveri, G., A. Gelmini, A. Polo, N. Anselmi, and A. Massa, "System-by-design multi-scale synthesis of task-oriented reflectarrays," IEEE Trans. Antennas Propag., Vol. 68, No. 4, 2867-2882, Apr. 2020.        Google Scholar

30. Oliveri, G., M. Salucci, N. Anselmi, and A. Massa, "Multi-scale system-by-design synthesis of printed WAIMs for waveguide array enhancement," IEEE J. Multiscale Multiphys. Comput. Tech., Vol. 2, 84-96, Jun. 2017.        Google Scholar

31. Oliveri, G., F. Viani, N. Anselmi, and A. Massa, "Synthesis of multi-layer WAIM coatings for planar phased arrays within the system-by-design framework," IEEE Trans. Antennas Propag., Vol. 63, No. 6, 2482-2496, Jun. 2015.        Google Scholar

32. Oliveri, G., A. Polo, M. Salucci, G. Gottardi, and A. Massa, "SbD-based synthesis of low-profile WAIM superstrates for printed patch arrays," IEEE Trans. Antennas Propag., Vol. 69, No. 7, 3849-3862, Jul. 2021.        Google Scholar

33. Oliveri, G., M. Salucci, R. Lombardi, R. Flamini, C. Mazzucco, S. Verzura, and A. Massa, "Wide-angle impedance matching layer-enhanced dual-polarization sub-6 GHz wide-scan array for next generation base stations," IEEE Trans. Antennas Propag., 2022.        Google Scholar

34. Salucci, M., L. Tenuti, G. Gottardi, M. A. Hannan, and A. Massa, "A System-by-Design method for efficient linear array miniaturization through low-complexity isotropic lenses," Electron. Lett., Vol. 55, No. 8, 433-434, Apr. 2019.        Google Scholar

35. Arnieri, E., M. Salucci, F. Greco, L. Boccia, A. Massa, and G. Amendola, "An equivalent circuit/system-by-design approach to the design of reflection-type dual-band circular polarizers," IEEE Trans. Antennas Propag., Vol. 70, No. 3, 2364-2369, Mar. 2022.        Google Scholar

36. Oliveri, G., P. Rocca, M. Salucci, and A. Massa, "Holographic smart EM skins for advanced beam power shaping in next generation wireless environments," IEEE J. Multiscale Multiphys. Comput. Tech., Vol. 6, 171-182, Oct. 2021.        Google Scholar

37. Oliveri, G., F. Zardi, P. Rocca, M. Salucci, and A. Massa, "Building a smart EM environment --- AI-enhanced aperiodic micro-scale design of passive EM skins," IEEE Trans. Antennas Propag., 2022.        Google Scholar

38. Ghouz, H. H. M., M. F. Abo Sree, and M. Aly Ibrahim, "Novel wideband microstrip monopole antenna designs for WiFi/LTE/WiMax devices," IEEE Access, Vol. 8, 9532-9539, 2020.        Google Scholar

39. Sediq, H. and Y. Mohammed, "Performance analysis of novel multi-band monopole antenna for various broadband wireless applications," Wireless Personal Communications, Vol. 112, No. 1, 571-585, 2020.        Google Scholar

40. Contreras-Lizarraga, A., et al., "A high-performance antenna-plexer for mobile devices," 2020 IEEE International Ultrasonics Symposium (IUS), 1-3, 2020.        Google Scholar

41. QORVO "Through the 5G antenna design maze with antenna-plexers,", 1-7, Oct. 2020, [Online], available: https://www.qorvo.com/resources/d/qorvo-through-5g-antenna-design-maze-with-antenna-plexer-white-paper.        Google Scholar