1. Yablonovitch, E., "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett., Vol. 58, 2059-2062, 1987.
doi:10.1103/PhysRevLett.58.2059 Google Scholar
2. John, S., "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett., Vol. 58, 2486-2489, 1987.
doi:10.1103/PhysRevLett.58.2486 Google Scholar
3. Masaya, N., "Manipulating light with strongly modulated photonic crystals," Rep. Prog. Phys., Vol. 73, 096501, 2010.
doi:10.1088/0034-4885/73/9/096501 Google Scholar
4. Jena, S., R. B. Tokas, P. Sarkar, J. S. Misal, S. MaidulHaque, K. D. Rao, S. Thakur, and N. K. Sahoo, "Omnidirectional photonic band gap in magnetron sputtered TiO2/SiO2 one dimensional photonic crystal," Thin Solid Films, Vol. 599, 138, 2016.
doi:10.1016/j.tsf.2015.12.069 Google Scholar
5. Zaghdoudi, J. and M. Kanzari, "One-dimensional photonic crystal filters using a gradient-index layer," Optik, Vol. 160, 189-196, 2018.
doi:10.1016/j.ijleo.2018.01.129 Google Scholar
6. Srivastava, S. K. and A. Aghajamali, "Analysis of reflectance properties in 1D photonic crystal containing metamaterial and high-temperature superconductor," J. Supcond. and Nov. Mag., Vol. 30, 343-351, 2017.
doi:10.1007/s10948-016-3788-4 Google Scholar
7. Srivastava, S. K., "Investigation of ultra-wide reflection bands in UV region by using one-dimensional multi quantum well photonic crystal," Progress In Electromagnetic Research, Vol. 38, 37-44, 2014.
doi:10.2528/PIERM14062308 Google Scholar
8. Liu, G. Q., H. H. Hua, Y. B. Liao, Z. S.Wang, Y. Chen, and Z. M. Liu, "Synthesis and photonicband gap characterization of high quality photonic crystal heterostructures," Optik, Vol. 122, 9-13, 2011.
doi:10.1016/j.ijleo.2009.09.015 Google Scholar
9. Aly, A. H. and Z. A. Zaky, "Ultra-sensitive photonic crystal cancer cells sensor with a high-quality factor," Cryogenics, Vol. 104, 102991, 2019.
doi:10.1016/j.cryogenics.2019.102991 Google Scholar
10. Lee, M. and P. M. Fauchet, "Two-dimensional silicon photonic crystal based biosensing platform for protein detection," Opt. Express, Vol. 15, 4530-4535, 2007.
doi:10.1364/OE.15.004530 Google Scholar
11. Rao, W., Y. Song, M. Liu, and C. Jin, "All-optical switch based on photonic crystal micro-cavity with multi-resonant modes," Optik --- Int. J. Light and Elec. Opt., Vol. 121, 1934-1936, 2010.
doi:10.1016/j.ijleo.2009.05.018 Google Scholar
12. Abohassan, K. M., H. S. Ashour, and M. M. Abadla, "A 1D binary photonic crystal sensor for detecting fat concentrations in commercial milk," RSC Advances, Vol. 11, 12058-12065, 2021.
doi:10.1039/D1RA00955A Google Scholar
13. Smith, D., R. Dalichaouch, N. Kroll, S. Schultz, S. McCall, and P. Platzman, "Photonic band structure and defects in one and two dimensions," JOSA B, Vol. 10, 314-321, 1993.
doi:10.1364/JOSAB.10.000314 Google Scholar
14. Aly, A. H. and H. A. Elsayed, "Defect mode properties in a one-dimensional photonic crystal," Physica B: Condensed Matter, Vol. 407, 120-125, 2012.
doi:10.1016/j.physb.2011.09.137 Google Scholar
15. Srivastava, S. K. and A. Aghajamali, "Narrow transmission mode in 1D symmetric defective photonic crystal containing metamaterial and high Tc superconductor," Optica Applicata, Vol. 49, 37-50, 2019. Google Scholar
16. Chang, T. W. and C. J. Wu, "Analysis of tuning in a photonic crystal multichannel filter containing coupled defects," Optik --- Int. J. Light and Elec. Opt., Vol. 124, 2028-2032, 2013.
doi:10.1016/j.ijleo.2012.06.023 Google Scholar
17. Wu, C.-J. and Z. H. Wang, "Properties of defect modes in one-dimensional photonic crystal," Progress In Electromagnetics Research, Vol. 103, 169-184, 2010.
doi:10.2528/PIER10031706 Google Scholar
18. Ha, Y. K., Y. C. Yang, J. E. Kim, H. Y. Park, C. S. Kee, H. Lim, and J. C. Lee, "Tunable omnidirectional reflection bands and defect modes of a one-dimensional photonic band gap structure with liquid crystals," Appl. Phys. Lett., Vol. 79, 15-17, 2001.
doi:10.1063/1.1381414 Google Scholar
19. Lu, Y. H., M. D. Huang, S. Y. Park, P. J. Kim, T. U. Nahm, Y. P. Lee, and J. Y. Rhee, "Controllable switching behavior of defect modes in one-dimensional heterostructure photonic crystals," J. Appl. Phys., Vol. 101, 036110, 2007.
doi:10.1063/1.2435067 Google Scholar
20. Wang, Z. S., L. Wang, Y. G. Wu, and L. Y. Chen, "Multiple channeled phenomena in heterostructures with defects mode," Appl. Phys. Lett., Vol. 84, 1629-1631, 2004.
doi:10.1063/1.1651650 Google Scholar
21. Hung, H. C., C. J. Wu, and S. J. Chang, "Terahertz temperature dependent defect mode in a semiconductor dielectric photonic crystal," J. Appl. Phys., Vol. 110, 093110-1-6, 2011.
doi:10.1063/1.3660230 Google Scholar
22. Suthar, B. and A. Bhargava, "Temperature dependent tunable photonic channel filter," IEEE Photon. Tech. Lett., Vol. 24, 338-340, 2012.
doi:10.1109/LPT.2011.2178401 Google Scholar
23. Chaves, F. S. and H. V. Posada, "Dependence of the defect mode on the temperature and angle of incidence in a one-dimensional photonic crystal," Optik, Vol. 163, 16-21, 2018.
doi:10.1016/j.ijleo.2018.02.035 Google Scholar
24. Skoromets, V., H. Nmec, C. Kadlec, D. Fattakhova-Rohlfing, and P. Kuzel, "Electric field tunable defect mode in one-dimensional photonic crystal operating in the terahertz range," Appl. Phys. Lett., Vol. 102, 241106-1-4, 2013.
doi:10.1063/1.4809821 Google Scholar
25. Srivastava, S. K., "Electrically controlled reflection band and tunable defect modes in one-dimensional photonic crystal by using potassium titanyl phosphate (KTP) crystal," J. Nano. Electron. Optoelctron, Vol. 11, 284-289, 2016.
doi:10.1166/jno.2016.1895 Google Scholar
26. Tian, H. P. and J. Zi, "One-dimensional tunable photonic crystals by means of external magnetic fields," Opt. Commun., Vol. 252, 321-328, 2005.
doi:10.1016/j.optcom.2005.04.022 Google Scholar
27. Pu, S., T. Geng, X. Chen, X. Zeng, M. Liu, and Z. Di, "Tuning the band gap of self-assembled superparamagnetic photonic crystals in colloidal magnetic fluids using external magnetic fields," J. Magn. Magn. Mater., Vol. 320, 2345-2349, 2008.
doi:10.1016/j.jmmm.2008.04.134 Google Scholar
28. Fan, C. Z., G. Wang, and J. P. Huang, "Magneto controllable photonic crystals based on colloidal ferrofluids," J. Appl. Phys., Vol. 103, 094107, 2004.
doi:10.1063/1.2921133 Google Scholar
29. Srivastava, S. K., "Magneto tunable defect modes in one-dimensional photonic crystal based on magnetic fluid film," Springer Proc. Physics, Vol. 256, 163-171, 2020.
doi:10.1007/978-981-15-8625-5_17 Google Scholar
30. Xu, X. Y., R. J. Zhang, and Y. L. Gong, "The principles of pressure sensor based on photonic crystal," Acta Phys. Sin., Vol. 53, 724-727, 2004.
doi:10.7498/aps.53.724 Google Scholar
31. Yuan, Z. H., "Study on pressure sensor based on photonic crystal," J. Transducer Technol., Vol. 24, 27-29, 2005. Google Scholar
32. Ben-Ali, Y., F. Z. Elamri, A. Ouariach, F. Falyouni, Z. Tahri, and D. Bria, "A high sensitivity hydrostatic pressure and temperature based on a defective 1D photonic crystal," Journal of Electromagnetic Waves and Applications, Vol. 34, No. 15, 2030-2050, 2020.
doi:10.1080/09205071.2020.1806116 Google Scholar
33. Herrera, A. Y., J. M. Calero, and N. P. Montenegro, "Pressure, temperature, and thickness dependence of transmittance in a 1D superconductor-semiconductor photonic crystal," J. Appl. Phys., Vol. 123, 033101-1-5, 2018. Google Scholar
34. Segovia-Chaves, F. and H. Vinck-Posada, "The effect of the hydrostatic pressure and temperature on the defect mode in the band structure of one-dimensional photonic crystal," Optik, Vol. 156, 981-987, 2018.
doi:10.1016/j.ijleo.2017.12.037 Google Scholar
35. Segovia-Chaves, F. and H. Vick-Posada, "The effect of hydrostatic pressure and temperature on the defect mode in a GaAs/Ga0.7Al0.3As one-dimensional photonic crystal," Optik, Vol. 159, 169-175, 2018.
doi:10.1016/j.ijleo.2018.01.065 Google Scholar
36. Tao, S., D. Chen, J. Wang, J. Qiao, and Y. Duan, "A high sensitivity pressure sensor based on two-dimensional photonic crystal," Photon. Sensors, Vol. 6, 137-142, 2016.
doi:10.1007/s13320-016-0316-x Google Scholar
37. Jena, S., R. Tokas, S. Thakur, and D. Udupa, "Tunable mirrors and filers in 1d photonic crystals containing polymers," Physica E: Low-dimensional Systems and Nanostructures, Vol. 114, 113627, 2019.
doi:10.1016/j.physe.2019.113627 Google Scholar
38. He, J., S. Chen, H. Huang, B. Chen, X. Xiao, J. Lin, and Q. Chen, "Novel anisotropic januscomposite particles based on urushiol-erbium chelate polymer/polystyrene," Soft Mater., Vol. 13, 237, 2015.
doi:10.1080/1539445X.2015.1078817 Google Scholar
39. Duan, G., C. Zhang, A. Li, X. Yang, L. Lu, and X. Wang, "Preparation and characterizationof mesoporous zirconia made by using a poly (methyl methacrylate) template," Nanoscale Res. Lett., Vol. 3, 118, 2008.
doi:10.1007/s11671-008-9123-7 Google Scholar
40. Yeh, P., Optical Waves in Layered Media, 118-125, John Wiley & Sons, 1988.
41. Born, M. and E. Wolf, Principles of Optics, 4th Ed., 58-68, Pergamon, 1970.
42. Sanchez, A. and S. Orozco, "Elasto-optical effect on the band structure of a one-dimensionalphotonic crystal under hydrostatic pressure," J. Opt. Soc. Am. B, Vol. 33, 1406, 2016.
doi:10.1364/JOSAB.33.001406 Google Scholar
43. Sanchez, A., A. Porta, and S. Orozco, "Photonic band-gap and defect modes of a one-dimensional photonic crystal under localized compression," J. Appl. Phys., Vol. 121, 173101, 2017.
doi:10.1063/1.4982760 Google Scholar