Vol. 112
Latest Volume
All Volumes
PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-07-28
Hydrostatic Pressure Sensor Based on Defective One-Dimensional Photonic Crystal Containing Polymeric Materials
By
Progress In Electromagnetics Research M, Vol. 112, 105-114, 2022
Abstract
In this work, the design of a high sensitivity hydrostatic pressure sensor based on one-dimensional photonic crystal (1DPC) containing polymeric materials has been proposed and investigated, theoretically. The proposed structure consists of alternate layers of polystyrene (PS) and polymethyl metahacrylate (PMMA) with a defect of layer of PS, PMMA and air, respectively, in the middle of the PC structure. The sensing principle is based on the shift in the peak of transmitted wavelength when the hydrostatic pressure is applied on 1DPC. In order to obtain the transmission spectrum of 1DPC structure transfer matrix method (TMM) has been used. From the analysis it is found that with the increase in hydrostatic pressure transmission (or resonance) peak shifts towards the lower wavelength side with respect to the center wavelength. The average sensitivity (Δλ/ΔP) of the proposed sensor is found about 0.948 (nm/MPa) with polymer defect and 0.92 (nm/MPa) with air defect in the mid-IR frequency region, and the applied pressure range is 0 to 200 MPa.
Citation
Sanjeev Srivastava, "Hydrostatic Pressure Sensor Based on Defective One-Dimensional Photonic Crystal Containing Polymeric Materials," Progress In Electromagnetics Research M, Vol. 112, 105-114, 2022.
doi:10.2528/PIERM22062101
References

1. Yablonovitch, E., "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett., Vol. 58, 2059-2062, 1987.
doi:10.1103/PhysRevLett.58.2059

2. John, S., "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett., Vol. 58, 2486-2489, 1987.
doi:10.1103/PhysRevLett.58.2486

3. Masaya, N., "Manipulating light with strongly modulated photonic crystals," Rep. Prog. Phys., Vol. 73, 096501, 2010.
doi:10.1088/0034-4885/73/9/096501

4. Jena, S., R. B. Tokas, P. Sarkar, J. S. Misal, S. MaidulHaque, K. D. Rao, S. Thakur, and N. K. Sahoo, "Omnidirectional photonic band gap in magnetron sputtered TiO2/SiO2 one dimensional photonic crystal," Thin Solid Films, Vol. 599, 138, 2016.
doi:10.1016/j.tsf.2015.12.069

5. Zaghdoudi, J. and M. Kanzari, "One-dimensional photonic crystal filters using a gradient-index layer," Optik, Vol. 160, 189-196, 2018.
doi:10.1016/j.ijleo.2018.01.129

6. Srivastava, S. K. and A. Aghajamali, "Analysis of reflectance properties in 1D photonic crystal containing metamaterial and high-temperature superconductor," J. Supcond. and Nov. Mag., Vol. 30, 343-351, 2017.
doi:10.1007/s10948-016-3788-4

7. Srivastava, S. K., "Investigation of ultra-wide reflection bands in UV region by using one-dimensional multi quantum well photonic crystal," Progress In Electromagnetic Research, Vol. 38, 37-44, 2014.
doi:10.2528/PIERM14062308

8. Liu, G. Q., H. H. Hua, Y. B. Liao, Z. S.Wang, Y. Chen, and Z. M. Liu, "Synthesis and photonicband gap characterization of high quality photonic crystal heterostructures," Optik, Vol. 122, 9-13, 2011.
doi:10.1016/j.ijleo.2009.09.015

9. Aly, A. H. and Z. A. Zaky, "Ultra-sensitive photonic crystal cancer cells sensor with a high-quality factor," Cryogenics, Vol. 104, 102991, 2019.
doi:10.1016/j.cryogenics.2019.102991

10. Lee, M. and P. M. Fauchet, "Two-dimensional silicon photonic crystal based biosensing platform for protein detection," Opt. Express, Vol. 15, 4530-4535, 2007.
doi:10.1364/OE.15.004530

11. Rao, W., Y. Song, M. Liu, and C. Jin, "All-optical switch based on photonic crystal micro-cavity with multi-resonant modes," Optik --- Int. J. Light and Elec. Opt., Vol. 121, 1934-1936, 2010.
doi:10.1016/j.ijleo.2009.05.018

12. Abohassan, K. M., H. S. Ashour, and M. M. Abadla, "A 1D binary photonic crystal sensor for detecting fat concentrations in commercial milk," RSC Advances, Vol. 11, 12058-12065, 2021.
doi:10.1039/D1RA00955A

13. Smith, D., R. Dalichaouch, N. Kroll, S. Schultz, S. McCall, and P. Platzman, "Photonic band structure and defects in one and two dimensions," JOSA B, Vol. 10, 314-321, 1993.
doi:10.1364/JOSAB.10.000314

14. Aly, A. H. and H. A. Elsayed, "Defect mode properties in a one-dimensional photonic crystal," Physica B: Condensed Matter, Vol. 407, 120-125, 2012.
doi:10.1016/j.physb.2011.09.137

15. Srivastava, S. K. and A. Aghajamali, "Narrow transmission mode in 1D symmetric defective photonic crystal containing metamaterial and high Tc superconductor," Optica Applicata, Vol. 49, 37-50, 2019.

16. Chang, T. W. and C. J. Wu, "Analysis of tuning in a photonic crystal multichannel filter containing coupled defects," Optik --- Int. J. Light and Elec. Opt., Vol. 124, 2028-2032, 2013.
doi:10.1016/j.ijleo.2012.06.023

17. Wu, C.-J. and Z. H. Wang, "Properties of defect modes in one-dimensional photonic crystal," Progress In Electromagnetics Research, Vol. 103, 169-184, 2010.
doi:10.2528/PIER10031706

18. Ha, Y. K., Y. C. Yang, J. E. Kim, H. Y. Park, C. S. Kee, H. Lim, and J. C. Lee, "Tunable omnidirectional reflection bands and defect modes of a one-dimensional photonic band gap structure with liquid crystals," Appl. Phys. Lett., Vol. 79, 15-17, 2001.
doi:10.1063/1.1381414

19. Lu, Y. H., M. D. Huang, S. Y. Park, P. J. Kim, T. U. Nahm, Y. P. Lee, and J. Y. Rhee, "Controllable switching behavior of defect modes in one-dimensional heterostructure photonic crystals," J. Appl. Phys., Vol. 101, 036110, 2007.
doi:10.1063/1.2435067

20. Wang, Z. S., L. Wang, Y. G. Wu, and L. Y. Chen, "Multiple channeled phenomena in heterostructures with defects mode," Appl. Phys. Lett., Vol. 84, 1629-1631, 2004.
doi:10.1063/1.1651650

21. Hung, H. C., C. J. Wu, and S. J. Chang, "Terahertz temperature dependent defect mode in a semiconductor dielectric photonic crystal," J. Appl. Phys., Vol. 110, 093110-1-6, 2011.
doi:10.1063/1.3660230

22. Suthar, B. and A. Bhargava, "Temperature dependent tunable photonic channel filter," IEEE Photon. Tech. Lett., Vol. 24, 338-340, 2012.
doi:10.1109/LPT.2011.2178401

23. Chaves, F. S. and H. V. Posada, "Dependence of the defect mode on the temperature and angle of incidence in a one-dimensional photonic crystal," Optik, Vol. 163, 16-21, 2018.
doi:10.1016/j.ijleo.2018.02.035

24. Skoromets, V., H. Nmec, C. Kadlec, D. Fattakhova-Rohlfing, and P. Kuzel, "Electric field tunable defect mode in one-dimensional photonic crystal operating in the terahertz range," Appl. Phys. Lett., Vol. 102, 241106-1-4, 2013.
doi:10.1063/1.4809821

25. Srivastava, S. K., "Electrically controlled reflection band and tunable defect modes in one-dimensional photonic crystal by using potassium titanyl phosphate (KTP) crystal," J. Nano. Electron. Optoelctron, Vol. 11, 284-289, 2016.
doi:10.1166/jno.2016.1895

26. Tian, H. P. and J. Zi, "One-dimensional tunable photonic crystals by means of external magnetic fields," Opt. Commun., Vol. 252, 321-328, 2005.
doi:10.1016/j.optcom.2005.04.022

27. Pu, S., T. Geng, X. Chen, X. Zeng, M. Liu, and Z. Di, "Tuning the band gap of self-assembled superparamagnetic photonic crystals in colloidal magnetic fluids using external magnetic fields," J. Magn. Magn. Mater., Vol. 320, 2345-2349, 2008.
doi:10.1016/j.jmmm.2008.04.134

28. Fan, C. Z., G. Wang, and J. P. Huang, "Magneto controllable photonic crystals based on colloidal ferrofluids," J. Appl. Phys., Vol. 103, 094107, 2004.
doi:10.1063/1.2921133

29. Srivastava, S. K., "Magneto tunable defect modes in one-dimensional photonic crystal based on magnetic fluid film," Springer Proc. Physics, Vol. 256, 163-171, 2020.
doi:10.1007/978-981-15-8625-5_17

30. Xu, X. Y., R. J. Zhang, and Y. L. Gong, "The principles of pressure sensor based on photonic crystal," Acta Phys. Sin., Vol. 53, 724-727, 2004.
doi:10.7498/aps.53.724

31. Yuan, Z. H., "Study on pressure sensor based on photonic crystal," J. Transducer Technol., Vol. 24, 27-29, 2005.

32. Ben-Ali, Y., F. Z. Elamri, A. Ouariach, F. Falyouni, Z. Tahri, and D. Bria, "A high sensitivity hydrostatic pressure and temperature based on a defective 1D photonic crystal," Journal of Electromagnetic Waves and Applications, Vol. 34, No. 15, 2030-2050, 2020.
doi:10.1080/09205071.2020.1806116

33. Herrera, A. Y., J. M. Calero, and N. P. Montenegro, "Pressure, temperature, and thickness dependence of transmittance in a 1D superconductor-semiconductor photonic crystal," J. Appl. Phys., Vol. 123, 033101-1-5, 2018.

34. Segovia-Chaves, F. and H. Vinck-Posada, "The effect of the hydrostatic pressure and temperature on the defect mode in the band structure of one-dimensional photonic crystal," Optik, Vol. 156, 981-987, 2018.
doi:10.1016/j.ijleo.2017.12.037

35. Segovia-Chaves, F. and H. Vick-Posada, "The effect of hydrostatic pressure and temperature on the defect mode in a GaAs/Ga0.7Al0.3As one-dimensional photonic crystal," Optik, Vol. 159, 169-175, 2018.
doi:10.1016/j.ijleo.2018.01.065

36. Tao, S., D. Chen, J. Wang, J. Qiao, and Y. Duan, "A high sensitivity pressure sensor based on two-dimensional photonic crystal," Photon. Sensors, Vol. 6, 137-142, 2016.
doi:10.1007/s13320-016-0316-x

37. Jena, S., R. Tokas, S. Thakur, and D. Udupa, "Tunable mirrors and filers in 1d photonic crystals containing polymers," Physica E: Low-dimensional Systems and Nanostructures, Vol. 114, 113627, 2019.
doi:10.1016/j.physe.2019.113627

38. He, J., S. Chen, H. Huang, B. Chen, X. Xiao, J. Lin, and Q. Chen, "Novel anisotropic januscomposite particles based on urushiol-erbium chelate polymer/polystyrene," Soft Mater., Vol. 13, 237, 2015.
doi:10.1080/1539445X.2015.1078817

39. Duan, G., C. Zhang, A. Li, X. Yang, L. Lu, and X. Wang, "Preparation and characterizationof mesoporous zirconia made by using a poly (methyl methacrylate) template," Nanoscale Res. Lett., Vol. 3, 118, 2008.
doi:10.1007/s11671-008-9123-7

40. Yeh, P., Optical Waves in Layered Media, 118-125, John Wiley & Sons, New York, 1988.

41. Born, M. and E. Wolf, Principles of Optics, 4th Ed., 58-68, Pergamon, Oxford, 1970.

42. Sanchez, A. and S. Orozco, "Elasto-optical effect on the band structure of a one-dimensionalphotonic crystal under hydrostatic pressure," J. Opt. Soc. Am. B, Vol. 33, 1406, 2016.
doi:10.1364/JOSAB.33.001406

43. Sanchez, A., A. Porta, and S. Orozco, "Photonic band-gap and defect modes of a one-dimensional photonic crystal under localized compression," J. Appl. Phys., Vol. 121, 173101, 2017.
doi:10.1063/1.4982760