1. Pang, S., X. Zheng, H. Li, Y. Liu, and Y. Feng, "Passivity full-order sliding mode control for DFIG wind turbine system," IECON 2017 --- 43rd Annual Conference of the IEEE Industrial Electronics Society, 8236-8240, 2017, doi: 10.1109/IECON.2017.8217445.
doi:10.1109/IECON.2017.8217445 Google Scholar
2. Hou, L., X. Zheng, C. Wang, Y. Li, and H. Li, "Based on PCHD and HPSO sliding mode control of D-PMSG wind power system," 2018 International Power Electronics Conference (IPEC-Niigata 2018 --- ECCE Asia), 2901-2906, 2018, doi: 10.23919/IPEC.2018.8507616.
doi:10.23919/IPEC.2018.8507616 Google Scholar
3. Imad, A., S. El Hani, A. Echchaachouai, and A. A. Energy, "Robust active disturbance rejection control of a direct driven PMSG wind turbine," 2017 International Renewable and Sustainable Energy Conference (IRSEC), 1-6, 2017, doi: 10.1109/IRSEC.2017.8477283. Google Scholar
4. He, S. and M. Wang, "Grey prediction pi control of direct drive permanent magnet synchronous wind turbine," 2020 IEEE 4th Conference on Energy Internet and Energy System Integration (EI2), 2032-2035, 2020, doi: 10.1109/EI250167.2020.9346881.
doi:10.1109/EI250167.2020.9346881 Google Scholar
5. Barmpatza, A. C. and J. C. Kappatou, "Study of a combined demagnetization and eccentricity fault in an AFPM synchronous generator," Energies, 2020. Google Scholar
6. Ismagilov, F. R., V. Vavilov, D. Gusakov, A. Kh. Miniyarov, and V. V. Ayguzina, "Diagnostic method of rotor cracks and local demagnetization by using the measuring coils for the permanent magnet synchronous machines," Progress In Electromagnetics Research C, Vol. 86, 123-136, 2018.
doi:10.2528/PIERC18070205 Google Scholar
7. Mohammed, E., G. Kobet, and A. Eltom, "Investigation of a new method for synchronous generator loss of excitation protection," 2019 IEEE Power & Energy Society General Meeting (PESGM), 1-5, IEEE, 2019. Google Scholar
8. Lu, W., H. Zhao, and S. Liu, "Demagnetization conditions comparison for line-start permanent magnet synchronous motors," 2014 17th International Conference on Electrical Machines and Systems (ICEMS), 48-52, 2014, doi: 10.1109/ICEMS.2014.7013449.
doi:10.1109/ICEMS.2014.7013449 Google Scholar
9. Kim, D.-H., K. S. Kim, I.-J. Yang, J. Lee, and W.-H. Kim, "Alternative bridge spoke permanent magnet synchronous generator design for wind power generation systems," IEEE Access, Vol. 9, 152819-152828, 2021, doi: 10.1109/ACCESS.2021.3127556.
doi:10.1109/ACCESS.2021.3127556 Google Scholar
10. Mínaz, M. R. and E. Akcan, "An effective method for detection of demagnetization fault in axial flux coreless PMSG with texture-based analysis," IEEE Access, Vol. 9, 17438-17449, 2021, doi: 10.1109/ACCESS.2021.3050418.
doi:10.1109/ACCESS.2021.3050418 Google Scholar
11. Huan, J. and H. Zhu, "Design of the outer-rotor coreless bearingless permanent magnet synchronous generator based on an improved MOPSO algorithm," Progress In Electromagnetics Research M, Vol. 110, 11-24, 2022.
doi:10.2528/PIERM22022202 Google Scholar
12. Zhu, H., K. Zhou, and J. Huan, "Compensation rotor vibration of outer rotor coreless bearingless permanent magnet synchronous generator using variable step least mean square adaptive filter," Progress In Electromagnetics Research M, Vol. 106, 191-203, 2021.
doi:10.2528/PIERM21100504 Google Scholar
13. Zhou, B., G. Tang, and Y. Luo, "Dynamic modeling and analysis of demagnetizing rotor of permanent magnet synchronous motor," Shock and Vibration, 2021. Google Scholar
14. Song, X., J. Zhao, J. Song, et al. "Local demagnetization fault recognition of permanent magnet synchronous linear motor based on S-transform and PSO-LSSVM," IEEE Transactions on Power Electronics, Vol. 35, No. 8, 7816-7825, 2020.
doi:10.1109/TPEL.2020.2967053 Google Scholar
15. Barmpatza, A. C. and J. C. Kappatou, "Study of the total demagnetization fault of an AFPM wind generator," IEEE Transactions on Energy Conversion, 2020. Google Scholar
16. Huang, G., J. Li, E. F. Fukushima, et al. "An improved equivalent-input-disturbance approach for PMSM drive with demagnetization fault," ISA Transactions, 2020. Google Scholar
17. Zhao, K., R. Zhou, J. T. She, et al. "Demagnetization-fault reconstruction and tolerant-control for PMSM using improved SMO-based equivalent-input-disturbance approach," IEEE/ASME Transactions on Mechatronics, 2021. Google Scholar
18. Lin, L., X. Zhang, W. Guo, et al. "Analysis on loss-of-excitation process and research on protection method of synchronous generators," High Voltage Engineering, Vol. 40, No. 11, 3544-3553, 2014. Google Scholar
19. Zhang, Z., H. Zhang, T. Yue, et al. "Diagnosis of PMSG demagnetization degree based on fuzzy neural network," Micromotors, Vol. 52, No. 11, 27-30, 2019, doi: 10.15934/j.cnki.micromotors.2019.11.006. Google Scholar
20. Imad, A., S. El Hani, A. Echchaachouai, and A. A. Energy, "Robust active disturbance rejection control of a direct driven PMSG wind turbine," 2017 International Renewable and Sustainable Energy Conference (IRSEC), 1-6, 2017, doi: 10.1109/IRSEC.2017.8477283. Google Scholar
21. Cui, S., B. Du, and S. Han, "A diagnosis for demagnetization of permanent magnetic synchronous motor based on second order generalized integrator," 2015 IEEE Vehicle Power and Propulsion Conference (VPPC), 1-5, 2015, doi: 10.1109/VPPC.2015.7352874. Google Scholar
22. Quintal-Palomo, R. E., M. Flota-Bañuelos, A. Bassam, R. Peόn-Escalante, F. Peñuñuri, and M. Dybkowski, "Post-fault demagnetization of a PMSG under field oriented control operation," IEEE Access, Vol. 9, 53838-53848, 2021, doi: 10.1109/ACCESS.2021.3070531.
doi:10.1109/ACCESS.2021.3070531 Google Scholar
23. Usman, A., V. K. Sharma, and B. S. Rajpurohit, "Harmonic analysis of a BLDC motor under demagnetization fault conditions," 2020 IEEE 9th Power India International Conference (PIICON), IEEE, 2020. Google Scholar
24. Verkroost, L., J. De Bisschop, H. Vansompel, F. De Belie, and P. Sergeant, "Active demagnetization fault compensation for axial flux permanent-magnet synchronous machines using an analytical inverse model," IEEE Transactions on Energy Conversion, Vol. 35, No. 2, 591-599, Jun. 2020, doi: 10.1109/TEC.2019.2958071.
doi:10.1109/TEC.2019.2958071 Google Scholar