Vol. 114
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-10-26
Design of an Ultra-Broadband Polarization Rotating Reflective Surface for the Reduction of Radar Cross Section
By
Progress In Electromagnetics Research M, Vol. 114, 69-78, 2022
Abstract
A novel ultra-broadband Polarization Rotation (PR) Reflective Surface (PRRS) is presented, which can reflect the linearly polarized incident wave in orthogonal polarization state. The proposed PRRS consists of a periodic array of double split ring patches printed on a substrate, which is backed by a metallic ground. A PRRS composed of circular split ring units can realize polarization rotation in two wide frequency bands. When two circular split rings with gradual radii are arranged concentrically, an ultra-broadband polarized rotation will be obtained. This paper explains the mechanism of polarization rotation and the mechanism of Radar Cross Section (RCS) reduction and studies the influence of structural parameters on the polarization rotation frequency band. Simulation results show that a 101.6% PR bandwidth is achieved. Meanwhile, by arranging the unit cells of the PRRS in four orthogonal directions, the monostatic RCS reduction band ranges from 8 GHz to 21.8 GHz (or 92.6%) for arbitrary polarization of the incident wave.
Citation
Xin Mu Miao Lv Tao Ni , "Design of an Ultra-Broadband Polarization Rotating Reflective Surface for the Reduction of Radar Cross Section," Progress In Electromagnetics Research M, Vol. 114, 69-78, 2022.
doi:10.2528/PIERM22062705
http://www.jpier.org/PIERM/pier.php?paper=22062705
References

1. Samadi, F. and A. Sebak, "Dielectric based triangle-type AMC structure for RCS reduction at mmWave frequencies," IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, 1193-1194, 2020.
doi:10.1109/IEEECONF35879.2020.9329564

2. Liu, X., J. Gao, L. Xu, X. Cao, Y. Zhao, and S. Li, "A coding diffuse metasurface for RCS reduction," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 724-727, 2017.
doi:10.1109/LAWP.2016.2601108

3. Zhang, X. L., M. Niu, L. H. Su, and K. P. Song, "Radar cross section reduction based on metasurface," ChinaCom 2017: Communications and Networking, Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telec, B. Li, L. Shu, D. Zeng (eds.), 236, Springer, Cham, 2018.

4. LibiMol, V. A. and C. K. Aanandan, "Wideband radar cross section reduction using artificial magnetic conductor checkerboard surface," Progress In Electromagnetics Research M, Vol. 69, 171-183, 2018.
doi:10.2528/PIERM18030303

5. Li, Y. F., J. Q. Zhang, S. B. Qu, J. F. Wang, H. Y. Chen, Z. Xu, and A. X. Zhang, "Wideband radar cross section reduction using two-dimensional phase gradient metasurface," Appl. Phys. Lett., Vol. 104, 221110, 2014.
doi:10.1063/1.4881935

6. Kumar, P. V. and B. Ghosh, "Polarization sensitive dual-band metasurface lens for X-band applications," Progress In Electromagnetics Research M, Vol. 103, 141-149, 2021.
doi:10.2528/PIERM21051605

7. Joy, V., A. Dileep, P. Abhilash, R. U. Nair, and H. Singh, "Metasurfaces for stealth applications: A comprehensive review," Journal of Electronic Materials, 1-20, 2021.

8. Turpin, J. P., P. E. Sieber, and D. H.Werner, "Absorbing ground planes for reducing planar antenna radar cross-section based on frequency selective surfaces," IEEE Antennas Wireless Propag. Lett., Vol. 12, 1456-1459, 2013.
doi:10.1109/LAWP.2013.2288682

9. Jia, Y., Y. Liu, Y. J. Guo, K. Li, and S.-X. Gong, "Broadband polarization rotation reflective surfaces and their applications to RCS reduction," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 1, Jan. 2016.
doi:10.1109/TAP.2015.2502981

10. Khalaj-Amirhosseini, M. and M. Khanjarian, "Radar cross section reduction using polarization cancellation approach," Radar cross section reduction using polarization cancellation approach, Vol. 74, 107-110, 2018.

11. Yang, W., K.-W. Tam, W.-W. Choi, W. Che, and H. Hui, "Polarization rotation reflective surface based on artificial magnetic conductor and its application," Electronics Letters, Vol. 50, No. 21, 2015.

12. Ghosh, S., S. Bhattacharyya, D. Chaurasiya, and K. V. Srivastava, "An ultrawideband ultrathin metameterial absorber based on circular split rings," IEEE Antenna and Wireless Propagation Letters, Vol. 14, 2015.

13. Patel, K. and M. Joshi, "Broadband radar cross section reduction of microstrip antenna using polarization conversion metasurface," Progress In Electromagnetics Research B, Vol. 96, 67-86, 2022.
doi:10.2528/PIERB22060405

14. Qi, Y., B. Zhang, C. Liu, and X. Deng, "Ultra-broadband polarization conversion meta-surface and its application in polarization converter and RCS reduction," IEEE Access, Vol. 8, 116675-116684, 2020.
doi:10.1109/ACCESS.2020.3004127

15. Murugesan, A., K. T. Selvan, A. K. Iyer, K. V. Srivatsav, and A. Alphones, "A review of metasurface-assisted RCS reduction techniques," Progress In Electromagnetics Research B, Vol. 94, 75-103, 2021.
doi:10.2528/PIERB21081401

16. Yin, J. Y., H. J. Sun, and L. Zhang, "An ultra-wideband polarization conversion meta-surface and its application in RCS reduction," Progress In Electromagnetics Research Letters, Vol. 89, 29-36, 2020.
doi:10.2528/PIERL19091003

17. Khalaj-Amirhosseini, M. and M. Khanjarian, "Radar cross section reduction using polarization cancellation approach," Progress In Electromagnetics Research Letters, Vol. 74, 107-110, 2018.
doi:10.2528/PIERL18020401

18. Zhao, R., H. Chen, L. Zhang, F. Li, P. Zhou, J. Xie, and L. Deng, "Design and implementation of high efficiency and broadband transmission-type polarization converter based on diagonal split-ring resonator," Progress In Electromagnetics Research, Vol. 161, 1-10, 2018.
doi:10.2528/PIER17110604