Vol. 112
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-07-28
Electromagnetic Compatibility Study of Quadcopter UAVs : Characteristic Mode Analysis of the Frame's Material and Shape Effect
By
Progress In Electromagnetics Research M, Vol. 112, 1-14, 2022
Abstract
The variation in flight attitude, line-of-sight, and speed of unmanned aerial vehicles (UAVs) affect their polarization-dependent coupling cross-section and resultant compatibility to pulsed electromagnetic energy. Here, we present the out-of-band electromagnetic compatibility (EMC) effects of UAV frame material and shape on the UAV subcomponents. Characteristic mode analysis (CMA) is employed to study the fundamental modes supported by UAVs which facilitate the interpretation of its electromagnetic response and the prediction of its effect on the nearby components. Using CMA, we develop a framework that optimizes the placement of wires and traces of printed circuit boards (PCBs) on the frame mitigating interference from undesired electromagnetic sources. A 3-D scanner is used to provide four versions of a quadrotor UAV to study the frame shape effect on the coupling. Materials of differing permittivity are assigned to these frame versions to assist in understanding the material effect on the EM coupling to the UAV.
Citation
Mohamed Z. M. Hamdalla, Jesus M. Roacho-Valles, Anthony N. Caruso, and Ahmed M. Hassan, "Electromagnetic Compatibility Study of Quadcopter UAVs : Characteristic Mode Analysis of the Frame's Material and Shape Effect," Progress In Electromagnetics Research M, Vol. 112, 1-14, 2022.
doi:10.2528/PIERM22062907
References

1. Koo, V., Y. K. Chan, G. Vetharatnam, M. Y. Chua, C. H. Lim, C. S. Lim, C. C. Thum, T. S. Lim, Z. B. Ahmad, K. A. Mahmood, M. H. B. Shahid, C. Y. Ang, W. Q. Tan, P. N. Tan, K. S. Yee, W. G. Cheaw, H. S. Boey, A. L. Choo, and B. C. Sew, "A new unmanned aerial vehicle synthetic aperture radar for environmental monitoring," Progress In Electromagnetics Research, Vol. 122, 245-268, 2012.
doi:10.2528/PIER11092604

2. Kawamoto, Y., H. Nishiyama, N. Kato, F. Ono, and R. Miura, "Toward future unmanned aerial vehicle networks: Architecture, resource allocation and field experiments," IEEE Wireless Communications, Vol. 26, No. 1, 94-99, Feb. 2019.
doi:10.1109/MWC.2018.1700368

3. Intelligence, B. I., "Drones are about to fill the skies within the next 5 years," Business Insider, 2016.

4. Park, G., K. Park, and B. Song, "Spatio-temporal change monitoring of outside manure piles using unmanned aerial vehicle images," Drones, Vol. 5, No. 1, Art. No. 1, Mar. 2021.
doi:10.3390/drones5010001

5. Li, B., Z. Fei, and Y. Zhang, "Uav communications for 5g and beyond: Recent advances and future trends," IEEE Internet of Things Journal, Vol. 6, No. 2, 2241-2263, Apr. 2019.
doi:10.1109/JIOT.2018.2887086

6. Gonzalez-Prelcic, N., R. W. Heath, C. Rusu, and A. Klautau, "High-capacity millimeter wave UAV communications," UAV Communications for 5G and Beyond, 203-229, John Wiley & Sons, Ltd., 2020.

7. Abdel-Malek, M. A., N. Saputro, A. S. Ibrahim, and K. Akkaya, "Uav-assisted multi-path parallel routing for mmwave-based wireless networks," Internet of Things, Vol. 14, 100366, Jun. 2021.
doi:10.1016/j.iot.2021.100366

8. Zhou, F., R. Wang, and J. Bian, "Joint trajectories and power allocation design for dual UAV-enabled secrecy SWIPT networks," Progress In Electromagnetics Research M, Vol. 87, 73-82, 2019.
doi:10.2528/PIERM19092802

9. "The role of drones in future terrorist attacks," AUSA, Feb. 26, 2021, https://www.ausa.org/publications/role-drones-future-terrorist-attacks (accessed Jun. 13, 2021).

10. Tortorich, R., "A comprehensive study on printed circuit board backdoor coupling in high intensity radiated fields environments," LSU Doctoral Dissertations, 5536, May 2021.

11. Zhang, D., M. Zhao, E. Cheng, and Y. Chen, "GPR-based EMI prediction for UAV's dynamic datalink," IEEE Transactions on Electromagnetic Compatibility, Vol. 63, No. 1, 19-29, Feb. 2021.
doi:10.1109/TEMC.2020.3000919

12. Bo, L., Z. Shengbing, Y. Junpeng, and W. Liang, "An anti-interference method for about unmanned aerial vehicle flight data based on vxworks," 2016 IEEE Chinese Guidance, Navigation and Control Conference (CGNCC), 7-9, Aug. 2016.

13. Fernandez Romero, S., P. Lopez Rodriguez, D. Escot Bocanegra, D. Poyatos Martinez, and M. Anon Cancela, "Comparing open area test site and resonant chamber for unmanned aerial vehicle's high-intensity radiated field testing," IEEE Transactions on Electromagnetic Compatibility, Vol. 60, No. 6, 1704-1711, Dec. 2018.
doi:10.1109/TEMC.2017.2747771

14. Hassan, A. M., F. Vargas-Lara, J. F. Douglas, and E. J. Garboczi, "Electromagnetic resonances of individual single-walled carbon nanotubes with realistic shapes: A characteristic modes approach," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 7, 2743-2757, Jul. 2016.
doi:10.1109/TAP.2016.2526046

15. Durbhakula, K. C., et al., "Electromagnetic scattering from individual crumpled graphene flakes: A characteristic modes approach," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 11, 6035-6047, Nov. 2017.
doi:10.1109/TAP.2017.2752218

16. Dey, S., D. Chatterjee, E. J. Garboczi, and A. M. Hassan, "Plasmonic nanoantenna optimization using characteristic mode analysis," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 1, 43-53, Jan. 2020.
doi:10.1109/TAP.2019.2938705

17. Lau, B. K., M. Capek, and A. M. Hassan, "Characteristic modes: Progress, overview, and emerging topics," IEEE Antennas and Propagation Magazine, Vol. 64, No. 2, 14-22, Apr. 2022.
doi:10.1109/MAP.2022.3145719

18. Manteuffel, D., F. H. Lin, T. Li, N. Peitzmeier, and Z. N. Chen, "Characteristic mode-inspired advanced multiple antennas: Intuitive insight into element-, interelement-, and array levels of compact large arrays and metantennas," IEEE Antennas and Propagation Magazine, Vol. 64, No. 2, 49-57, Apr. 2022.
doi:10.1109/MAP.2022.3145714

19. Adams, J. J., S. Genovesi, B. Yang, and E. Antonino-Daviu, "Antenna element design using characteristic mode analysis: Insights and research directions," IEEE Antennas and Propagation Magazine, Vol. 64, No. 2, 32-40, Apr. 2022.
doi:10.1109/MAP.2022.3145718

20. Chen, Y. and C. Wang, "Electrically small UAV antenna design using characteristic modes," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 2, 535-545, Feb. 2014.
doi:10.1109/TAP.2013.2289999

21. Sow, S., L. Guo, S. Zhou, and T. Chio, "Electrically small structural antenna design for small UAV based on characteristics modes," 2017 11th European Conference on Antennas and Propagation (EUCAP), 2134-2138, Mar. 2017.
doi:10.23919/EuCAP.2017.7928206

22. Ma, R. and N. Behdad, "Design of platform-based hf direction-finding antennas using the characteristic mode theory," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 3, 1417-1427, Mar. 2019.
doi:10.1109/TAP.2018.2884878

23. Cao, Y. S., M. Ouyanz, Y. Wang, and J. Fan, "EMI modeling for antenna-chassis system using characteristic mode analysis," 2018 IEEE Symposium on Electromagnetic Compatibility, Signal Integrity and Power Integrity (EMC, SI PI), 181-186, Jul. 2018.

24. Yang, X., et al., "EMI radiation mitigation for heatsinks using characteristic mode analysis," 2018 IEEE Symposium on Electromagnetic Compatibility, Signal Integrity and Power Integrity (EMC, SI PI), 374-378, Jul. 2018.

25. Hamdalla, M. Z. M., et al., "Electromagnetic interference of unmanned aerial vehicles: A characteristic mode analysis approach," 2019 IEEE International Symposium on Antennas and Prop- agation and USNC-URSI Radio Science Meeting, 553-554, Jul. 2019.

26. Uckerseifer, J. and F. Gronwald, "Characteristic mode analysis of surface current distributions on metallic structures exposed to HIRF- and DCI-excitations," Adv. Radio Sci., Vol. 18, 33-41, Dec. 2020.
doi:10.5194/ars-18-33-2020

27. Rothenhausler, M. and F. Gronwald, "Characteristic mode analysis of hirf- and dci-excitations of an aircraft structure," 2017 International Symposium on Electromagnetic Compatibility --- EMC EUROPE, 1-6, Sep. 2017.

28. Hamdalla, M. Z. M., A. N. Caruso, and A. M. Hassan, "Predicting electromagnetic interference to a terminated wire using characteristic mode analysis," 2020 International Applied Computational Electromagnetics Society Symposium (ACES), 1-2, Jul. 2020.

29. Hamdalla, M., B. Bissen, A. N. Caruso, and M. Hassan, "Experimental validations of characteristic mode analysis predictions using GTEM measurements," IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, 1799-1800, Montreal, Quebec, Canada, Jul. 2020.

30. Hamdalla, M. Z. M., et al., "Characteristic mode analysis prediction and guidance of electromagnetic coupling measurements to a UAV model," IEEE Access, Vol. 10, 914-925, 2022.
doi:10.1109/ACCESS.2021.3138296

31. Wu, Q., "Characteristic mode analysis of composite metallic-dielectric structures using impedance boundary condition," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 12, 7415-7424, Dec. 2019.
doi:10.1109/TAP.2019.2934902

32. Wu, Q., "Characteristic mode assisted design of dielectric resonator antennas with feedings," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 8, 5294-5304, Aug. 2019.
doi:10.1109/TAP.2019.2916763

33. Boyuan, M., S. Huang, J. Pan, Y.-T. Liu, D. Yang, and Y.-X. Guo, "Higher-order characteristic modes-based broad-beam dielectric resonator antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 21, No. 4, 818-822, Apr. 2022.
doi:10.1109/LAWP.2022.3149603

34. Huang, S., C.-F. Wang, J. Pan, and D. Yang, "Accurate sub-structure characteristic mode analysis of dielectric resonator antennas with finite ground plan," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 10, 6930-6935, Oct. 2021.
doi:10.1109/TAP.2021.3070648

35. Huang, S., J. Pan, C. Wang, Y. Luo, and D. Yang, "Unified implementation and cross-validation of the integral equation-based formulations for the characteristic modes of dielectric bodies," IEEE Access, Vol. 8, 5655-5666, 2020.
doi:10.1109/ACCESS.2019.2963278

36. Guo, X.-Y., R.-Z. Lian, and M.-Y. Xia, "Variant characteristic mode equations using different power operators for material bodies," IEEE Access, Vol. 9, 62021-62028, 2021.
doi:10.1109/ACCESS.2021.3073901

37. Huang, S., C.-F. Wang, J. Pan, D. Yang, and M.-C. Tang, "Full equiphase characteristic mode solution to lossless composite metallic-dielectric problems," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 12, 8526-8538, Dec. 2021.
doi:10.1109/TAP.2021.3090791

38. Hamdalla, M. Z. M., A. M. Hassan, and A. N. Caruso, "Characteristic mode analysis of the effect of the UAV frame material on coupling and interference," 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, 1497-1498, Jul. 2019.

39. Harrington, R. and J. Mautz, "Theory of characteristic modes for conducting bodies," IEEE Transactions on Antennas and Propagation, Vol. 19, No. 5, 622-628, Sep. 1971.
doi:10.1109/TAP.1971.1139999

40. Cabedo-Fabres, M., E. Antonino-Daviu, A. Valero-Nogueira, and M. F. Bataller, "The theory of characteristic modes revisited: A contribution to the design of antennas for modern applications," IEEE Antennas and Propagation Magazine, Vol. 49, No. 5, 52-68, Oct. 2007.
doi:10.1109/MAP.2007.4395295

41. Chang, Y. and R. Harrington, "A surface formulation for characteristic modes of material bodies," IEEE Transactions on Antennas and Propagation, Vol. 25, No. 6, 789-795, Nov. 1977.
doi:10.1109/TAP.1977.1141685

42. Gaynutdinov, R. R., I. V. Suzdaltsev, and S. F. Chermoshentsev, "Optimization unmanned aerial vehicle onboard equipment placement," 2020 International Russian Automation Conference (RusAutoCon), 1000-1004, Sep. 2020.
doi:10.1109/RusAutoCon49822.2020.9208172

43. Makeev, P., "Two-level algorithm for automated placement of elements on a flex-rigid printed circuit board," 2021 International Conference on Electrotechnical Complexes and Systems (ICOECS), 196-201, Nov. 2021.

44. Electromagnetic simulation software|altair feko, https://altairhyperworks.com/product/FEKO.
doi:10.1109/TAP.1980.1142388

45. Garbacz, R. and E. Newman, "Characteristic modes of a symmetric wire cross," IEEE Transactions on Antennas and Propagation, Vol. 28, No. 5, 712-715, Sep. 1980.
doi:10.1109/TAP.2019.2905718

46. Peitzmeier, N. and D. Manteuffel, "Upper bounds and design guidelines for realizing uncorrelated ports on multimode antennas based on symmetry analysis of characteristic modes," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 6, 3902-3914, Jun. 2019.
doi:10.1109/ISEMC.2003.1236559

47. Hubing, T., "PCB EMC design guidelines: A brief annotated list," 2003 IEEE Symposium on Electromagnetic Compatibility. Symposium Record (Cat. No.03CH37446), Vol. 1, 34-36, Aug. 2003.

48. Doridant, A., et al., "EMC of DSI3 communication protocol --- PCB Consideration for Sensor product," 2017 International Symposium on Electromagnetic Compatibility --- EMC EUROPE, 1-6, Sep. 2017.
doi:10.1109/ICECA.2017.8203699

49. Rehpade, R., S. D. Pable, and G. K. Kharate, "Design issues & challenges with EMI/EMC in system on packages (SOPs)," 2017 International conference of Electronics, Communication and Aerospace Technology (ICECA), Vol. 1, 335-338, Apr. 2017.