1. Koo, V., Y. K. Chan, G. Vetharatnam, M. Y. Chua, C. H. Lim, C. S. Lim, C. C. Thum, T. S. Lim, Z. B. Ahmad, K. A. Mahmood, M. H. B. Shahid, C. Y. Ang, W. Q. Tan, P. N. Tan, K. S. Yee, W. G. Cheaw, H. S. Boey, A. L. Choo, and B. C. Sew, "A new unmanned aerial vehicle synthetic aperture radar for environmental monitoring," Progress In Electromagnetics Research, Vol. 122, 245-268, 2012.
doi:10.2528/PIER11092604 Google Scholar
2. Kawamoto, Y., H. Nishiyama, N. Kato, F. Ono, and R. Miura, "Toward future unmanned aerial vehicle networks: Architecture, resource allocation and field experiments," IEEE Wireless Communications, Vol. 26, No. 1, 94-99, Feb. 2019.
doi:10.1109/MWC.2018.1700368 Google Scholar
3. Intelligence, B. I., "Drones are about to fill the skies within the next 5 years," Business Insider, 2016. Google Scholar
4. Park, G., K. Park, and B. Song, "Spatio-temporal change monitoring of outside manure piles using unmanned aerial vehicle images," Drones, Vol. 5, No. 1, Art. No. 1, Mar. 2021.
doi:10.3390/drones5010001 Google Scholar
5. Li, B., Z. Fei, and Y. Zhang, "Uav communications for 5g and beyond: Recent advances and future trends," IEEE Internet of Things Journal, Vol. 6, No. 2, 2241-2263, Apr. 2019.
doi:10.1109/JIOT.2018.2887086 Google Scholar
6. Gonzalez-Prelcic, N., R. W. Heath, C. Rusu, and A. Klautau, "High-capacity millimeter wave UAV communications," UAV Communications for 5G and Beyond, 203-229, John Wiley & Sons, Ltd., 2020. Google Scholar
7. Abdel-Malek, M. A., N. Saputro, A. S. Ibrahim, and K. Akkaya, "Uav-assisted multi-path parallel routing for mmwave-based wireless networks," Internet of Things, Vol. 14, 100366, Jun. 2021.
doi:10.1016/j.iot.2021.100366 Google Scholar
8. Zhou, F., R. Wang, and J. Bian, "Joint trajectories and power allocation design for dual UAV-enabled secrecy SWIPT networks," Progress In Electromagnetics Research M, Vol. 87, 73-82, 2019.
doi:10.2528/PIERM19092802 Google Scholar
9. "The role of drones in future terrorist attacks," AUSA, Feb. 26, 2021, https://www.ausa.org/publications/role-drones-future-terrorist-attacks (accessed Jun. 13, 2021). Google Scholar
10. Tortorich, R., "A comprehensive study on printed circuit board backdoor coupling in high intensity radiated fields environments," LSU Doctoral Dissertations, 5536, May 2021. Google Scholar
11. Zhang, D., M. Zhao, E. Cheng, and Y. Chen, "GPR-based EMI prediction for UAV's dynamic datalink," IEEE Transactions on Electromagnetic Compatibility, Vol. 63, No. 1, 19-29, Feb. 2021.
doi:10.1109/TEMC.2020.3000919 Google Scholar
12. Bo, L., Z. Shengbing, Y. Junpeng, and W. Liang, "An anti-interference method for about unmanned aerial vehicle flight data based on vxworks," 2016 IEEE Chinese Guidance, Navigation and Control Conference (CGNCC), 7-9, Aug. 2016. Google Scholar
13. Fernandez Romero, S., P. Lopez Rodriguez, D. Escot Bocanegra, D. Poyatos Martinez, and M. Anon Cancela, "Comparing open area test site and resonant chamber for unmanned aerial vehicle's high-intensity radiated field testing," IEEE Transactions on Electromagnetic Compatibility, Vol. 60, No. 6, 1704-1711, Dec. 2018.
doi:10.1109/TEMC.2017.2747771 Google Scholar
14. Hassan, A. M., F. Vargas-Lara, J. F. Douglas, and E. J. Garboczi, "Electromagnetic resonances of individual single-walled carbon nanotubes with realistic shapes: A characteristic modes approach," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 7, 2743-2757, Jul. 2016.
doi:10.1109/TAP.2016.2526046 Google Scholar
15. Durbhakula, K. C., et al., "Electromagnetic scattering from individual crumpled graphene flakes: A characteristic modes approach," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 11, 6035-6047, Nov. 2017.
doi:10.1109/TAP.2017.2752218 Google Scholar
16. Dey, S., D. Chatterjee, E. J. Garboczi, and A. M. Hassan, "Plasmonic nanoantenna optimization using characteristic mode analysis," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 1, 43-53, Jan. 2020.
doi:10.1109/TAP.2019.2938705 Google Scholar
17. Lau, B. K., M. Capek, and A. M. Hassan, "Characteristic modes: Progress, overview, and emerging topics," IEEE Antennas and Propagation Magazine, Vol. 64, No. 2, 14-22, Apr. 2022.
doi:10.1109/MAP.2022.3145719 Google Scholar
18. Manteuffel, D., F. H. Lin, T. Li, N. Peitzmeier, and Z. N. Chen, "Characteristic mode-inspired advanced multiple antennas: Intuitive insight into element-, interelement-, and array levels of compact large arrays and metantennas," IEEE Antennas and Propagation Magazine, Vol. 64, No. 2, 49-57, Apr. 2022.
doi:10.1109/MAP.2022.3145714 Google Scholar
19. Adams, J. J., S. Genovesi, B. Yang, and E. Antonino-Daviu, "Antenna element design using characteristic mode analysis: Insights and research directions," IEEE Antennas and Propagation Magazine, Vol. 64, No. 2, 32-40, Apr. 2022.
doi:10.1109/MAP.2022.3145718 Google Scholar
20. Chen, Y. and C. Wang, "Electrically small UAV antenna design using characteristic modes," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 2, 535-545, Feb. 2014.
doi:10.1109/TAP.2013.2289999 Google Scholar
21. Sow, S., L. Guo, S. Zhou, and T. Chio, "Electrically small structural antenna design for small UAV based on characteristics modes," 2017 11th European Conference on Antennas and Propagation (EUCAP), 2134-2138, Mar. 2017.
doi:10.23919/EuCAP.2017.7928206 Google Scholar
22. Ma, R. and N. Behdad, "Design of platform-based hf direction-finding antennas using the characteristic mode theory," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 3, 1417-1427, Mar. 2019.
doi:10.1109/TAP.2018.2884878 Google Scholar
23. Cao, Y. S., M. Ouyanz, Y. Wang, and J. Fan, "EMI modeling for antenna-chassis system using characteristic mode analysis," 2018 IEEE Symposium on Electromagnetic Compatibility, Signal Integrity and Power Integrity (EMC, SI PI), 181-186, Jul. 2018. Google Scholar
24. Yang, X., et al., "EMI radiation mitigation for heatsinks using characteristic mode analysis," 2018 IEEE Symposium on Electromagnetic Compatibility, Signal Integrity and Power Integrity (EMC, SI PI), 374-378, Jul. 2018. Google Scholar
25. Hamdalla, M. Z. M., et al., "Electromagnetic interference of unmanned aerial vehicles: A characteristic mode analysis approach," 2019 IEEE International Symposium on Antennas and Prop- agation and USNC-URSI Radio Science Meeting, 553-554, Jul. 2019. Google Scholar
26. Uckerseifer, J. and F. Gronwald, "Characteristic mode analysis of surface current distributions on metallic structures exposed to HIRF- and DCI-excitations," Adv. Radio Sci., Vol. 18, 33-41, Dec. 2020.
doi:10.5194/ars-18-33-2020 Google Scholar
27. Rothenhausler, M. and F. Gronwald, "Characteristic mode analysis of hirf- and dci-excitations of an aircraft structure," 2017 International Symposium on Electromagnetic Compatibility --- EMC EUROPE, 1-6, Sep. 2017. Google Scholar
28. Hamdalla, M. Z. M., A. N. Caruso, and A. M. Hassan, "Predicting electromagnetic interference to a terminated wire using characteristic mode analysis," 2020 International Applied Computational Electromagnetics Society Symposium (ACES), 1-2, Jul. 2020. Google Scholar
29. Hamdalla, M., B. Bissen, A. N. Caruso, and M. Hassan, "Experimental validations of characteristic mode analysis predictions using GTEM measurements," IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, 1799-1800, Montreal, Quebec, Canada, Jul. 2020. Google Scholar
30. Hamdalla, M. Z. M., et al., "Characteristic mode analysis prediction and guidance of electromagnetic coupling measurements to a UAV model," IEEE Access, Vol. 10, 914-925, 2022.
doi:10.1109/ACCESS.2021.3138296 Google Scholar
31. Wu, Q., "Characteristic mode analysis of composite metallic-dielectric structures using impedance boundary condition," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 12, 7415-7424, Dec. 2019.
doi:10.1109/TAP.2019.2934902 Google Scholar
32. Wu, Q., "Characteristic mode assisted design of dielectric resonator antennas with feedings," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 8, 5294-5304, Aug. 2019.
doi:10.1109/TAP.2019.2916763 Google Scholar
33. Boyuan, M., S. Huang, J. Pan, Y.-T. Liu, D. Yang, and Y.-X. Guo, "Higher-order characteristic modes-based broad-beam dielectric resonator antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 21, No. 4, 818-822, Apr. 2022.
doi:10.1109/LAWP.2022.3149603 Google Scholar
34. Huang, S., C.-F. Wang, J. Pan, and D. Yang, "Accurate sub-structure characteristic mode analysis of dielectric resonator antennas with finite ground plan," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 10, 6930-6935, Oct. 2021.
doi:10.1109/TAP.2021.3070648 Google Scholar
35. Huang, S., J. Pan, C. Wang, Y. Luo, and D. Yang, "Unified implementation and cross-validation of the integral equation-based formulations for the characteristic modes of dielectric bodies," IEEE Access, Vol. 8, 5655-5666, 2020.
doi:10.1109/ACCESS.2019.2963278 Google Scholar
36. Guo, X.-Y., R.-Z. Lian, and M.-Y. Xia, "Variant characteristic mode equations using different power operators for material bodies," IEEE Access, Vol. 9, 62021-62028, 2021.
doi:10.1109/ACCESS.2021.3073901 Google Scholar
37. Huang, S., C.-F. Wang, J. Pan, D. Yang, and M.-C. Tang, "Full equiphase characteristic mode solution to lossless composite metallic-dielectric problems," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 12, 8526-8538, Dec. 2021.
doi:10.1109/TAP.2021.3090791 Google Scholar
38. Hamdalla, M. Z. M., A. M. Hassan, and A. N. Caruso, "Characteristic mode analysis of the effect of the UAV frame material on coupling and interference," 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, 1497-1498, Jul. 2019. Google Scholar
39. Harrington, R. and J. Mautz, "Theory of characteristic modes for conducting bodies," IEEE Transactions on Antennas and Propagation, Vol. 19, No. 5, 622-628, Sep. 1971.
doi:10.1109/TAP.1971.1139999 Google Scholar
40. Cabedo-Fabres, M., E. Antonino-Daviu, A. Valero-Nogueira, and M. F. Bataller, "The theory of characteristic modes revisited: A contribution to the design of antennas for modern applications," IEEE Antennas and Propagation Magazine, Vol. 49, No. 5, 52-68, Oct. 2007.
doi:10.1109/MAP.2007.4395295 Google Scholar
41. Chang, Y. and R. Harrington, "A surface formulation for characteristic modes of material bodies," IEEE Transactions on Antennas and Propagation, Vol. 25, No. 6, 789-795, Nov. 1977.
doi:10.1109/TAP.1977.1141685 Google Scholar
42. Gaynutdinov, R. R., I. V. Suzdaltsev, and S. F. Chermoshentsev, "Optimization unmanned aerial vehicle onboard equipment placement," 2020 International Russian Automation Conference (RusAutoCon), 1000-1004, Sep. 2020.
doi:10.1109/RusAutoCon49822.2020.9208172 Google Scholar
43. Makeev, P., "Two-level algorithm for automated placement of elements on a flex-rigid printed circuit board," 2021 International Conference on Electrotechnical Complexes and Systems (ICOECS), 196-201, Nov. 2021. Google Scholar
44. Electromagnetic simulation software|altair feko, https://altairhyperworks.com/product/FEKO.
doi:10.1109/TAP.1980.1142388
45. Garbacz, R. and E. Newman, "Characteristic modes of a symmetric wire cross," IEEE Transactions on Antennas and Propagation, Vol. 28, No. 5, 712-715, Sep. 1980.
doi:10.1109/TAP.2019.2905718 Google Scholar
46. Peitzmeier, N. and D. Manteuffel, "Upper bounds and design guidelines for realizing uncorrelated ports on multimode antennas based on symmetry analysis of characteristic modes," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 6, 3902-3914, Jun. 2019.
doi:10.1109/ISEMC.2003.1236559 Google Scholar
47. Hubing, T., "PCB EMC design guidelines: A brief annotated list," 2003 IEEE Symposium on Electromagnetic Compatibility. Symposium Record (Cat. No.03CH37446), Vol. 1, 34-36, Aug. 2003. Google Scholar
48. Doridant, A., et al., "EMC of DSI3 communication protocol --- PCB Consideration for Sensor product," 2017 International Symposium on Electromagnetic Compatibility --- EMC EUROPE, 1-6, Sep. 2017.
doi:10.1109/ICECA.2017.8203699 Google Scholar
49. Rehpade, R., S. D. Pable, and G. K. Kharate, "Design issues & challenges with EMI/EMC in system on packages (SOPs)," 2017 International conference of Electronics, Communication and Aerospace Technology (ICECA), Vol. 1, 335-338, Apr. 2017. Google Scholar