Vol. 113
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-09-17
A Series-Series Compensated Contactless Power Transfer Based on the Rotary Transformer for the Drilling System
By
Progress In Electromagnetics Research M, Vol. 113, 129-138, 2022
Abstract
The electrical representation of the contactless power transfer (CPT) system with a coaxial transformer for the power traction in the rotary drilling system is presented. The air gap in the rotary transformer can lead to a lot of leakage inductance, so that the series-series (SS) compensation capacitors are used to increase the efficiency and the capability of the system. Moreover, the frequency response of the SS compensated CPT system is analyzed, and the transfer characteristics of the CPT system are revealed at different resonant frequencies. It is shown that the phase angle of the input impedance at resonant frequency determines the operation mode of the CPT system. At resonant frequency ω0, the system can operate in constant-current (CC) mode, whereas at resonant frequency ωH, it can work in constant-voltage (CV) mode. In the application of the drilling system, the CV mode owning good load regulation is more preferred than the CC mode for a wide range of load variation. At last, the analysis result is verified by experiment. The experimental results indicate that the CPT system in the CV mode can produce a 30~35 V voltage output and can transfer maximum power 180 W with an efficiency of 78.5%. The proposed CPT system can well meet the requirement of power supply in the drilling system.
Citation
Ruiwen Kong Liuge Du , "A Series-Series Compensated Contactless Power Transfer Based on the Rotary Transformer for the Drilling System," Progress In Electromagnetics Research M, Vol. 113, 129-138, 2022.
doi:10.2528/PIERM22070201
http://www.jpier.org/PIERM/pier.php?paper=22070201
References

1. Park, J. Y., C. J. Park, and Y. J. Shin, "Planar multiresonance reactive shield for reducing electromagnetic interference in portable wireless power charging application," Appl. Phys. Lett., Vol. 114, 203902, 2019.
doi:10.1063/1.5097038

2. Chen, Q., S. C. Wong, and C. K. Tse, "Analysis, design, and control of a transcutaneous power regulator for artificial hearts," IEEE Trans. Biomed. Circuits Syst., Vol. 3, No. 1, 23-31, 2009.
doi:10.1109/TBCAS.2008.2006492

3. Mohammad, H. and S. Reem, "Wireless power transfer approaches for medical implants: A review," Signals, Vol. 1, 209-229, 2020.

4. Agarwal, K., R. Jegadeesan, and Y. X. Guo, "Wireless power transfer strategies for implantable bioelectronics," IEEE Rev. Biomed. Eng., Vol. 10, 136-161, 2017.
doi:10.1109/RBME.2017.2683520

5. Jung, S., H. Lee, and C. S. Song, "Optimal operation plan of the online electric vehicle system through establishment of a DC distribution system," IEEE Trans. Power Electron., Vol. 28, No. 12, 5878-5889, 2013.
doi:10.1109/TPEL.2013.2251667

6. Ali, Z., V. Z. Sadegh, and B. Amir, "A dynamic WPT system with high efficiency and high power factor for electric vehicles," IEEE Trans. Power Electron., Vol. 35, No. 7, 6732-6740, 202.

7. Kadem, K., F. Benyoubi, M. Bensetti, Y. L. Bihan, E. Labouré, and M. Debbou, "An efficient method for dimensioning magnetic shielding for an induction electric vehicle charging system," Progress In Electromagnetics Research, Vol. 170, 153-167, 2021.
doi:10.2528/PIER21031903

8. Yan, Z. C., B. W. Song, and Y. M. Zhang, "A rotation-free wireless power transfer system with stable output power and efficiency for autonomous underwater vehicles," IEEE Trans. Power Electron., Vol. 34, No. 5, 4005-4008, 2019.
doi:10.1109/TPEL.2018.2871316

9. Song, K., B. Q. Ma, and G. Yang, "A rotation-light weight wireless power transfer system for solar wing driving," IEEE Trans. Power Electron., Vol. 34, No. 9, 8816-8830, 2019.
doi:10.1109/TPEL.2018.2886910

10. Papastergiou, K. D. and D. E. Macpherson, "An airborne radar power supply with contactless transfer of energy-part I: Rotating transformer," IEEE Trans. Ind. Electron., Vol. 54, No. 5, 2874-2884, 2007.
doi:10.1109/TIE.2007.902044

11. Moradewicz, A., "Contactless energy transmission system with rotatable transformer-modeling, analyzes and design,", Ph.D. Dissertation, Electrotechnical Institute, Warsaw, Poland, 2008.

12. Zhang, W. and C. C. Mi, "Compensation topologies of high-Power wireless power transfer systems," IEEE Trans. Veh. Technol., Vol. 65, No. 6, 4768-4778, 2016.
doi:10.1109/TVT.2015.2454292

13. Zhang, W., S. Wong, and C. K. Tse, "Design for efficiency optimization and voltage controllability of series-series compensated inductive power transfer systems," IEEE Trans. Power Electron., Vol. 29, No. 1, 191-200, 2014.
doi:10.1109/TPEL.2013.2249112

14. Trevisan, R. and A. Costanzo, "State-of-the-art of contactless energy transfer (CET) systems: Design rules and applications," Wireless Power Transfer, Vol. 1, No. 1, 10-20, 2014.
doi:10.1017/wpt.2014.2

15. Steigerwald, R. L., "A comparison of half-bridge resonant converter topologies," IEEE Trans. Power Electron., Vol. 3, No. 2, 174-182, 1988.
doi:10.1109/63.4347

16. Cheng, B. and L. Z. He, "High-order network based general modeling method for improved transfer performance of the WPT system," IEEE Trans. Power Electron., Vol. 36, No. 11, 12375, 2021.
doi:10.1109/TPEL.2021.3076800