Vol. 114
Latest Volume
All Volumes
PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-10-13
Research on Sparse Imaging Method of Electrical Impedance Tomography Based on DK-SVD
By
Progress In Electromagnetics Research M, Vol. 114, 13-25, 2022
Abstract
As a noninvasive imaging technique for the interior of objects, Electrical Impedance Tomography (EIT) is widely used in many fields of biomedicine. Sparse reconstruction algorithms have made major breakthroughs in the field of image reconstruction in recent years. The K-SVD algorithm is an adaptive dictionary signal sparse representation algorithm, which could improve the reconstruction accuracy. However, the parameters in the K-SVD algorithm are fixed, which cannot match all the measurement data of EIT very well. Moreover, the K-SVD algorithm adopts a greedy algorithm in the sparse coding stage, which has high computational complexity. In this study, an electrical impedance sparse imaging method based on DK-SVD (deep k-singular value decomposition) was designed. It provides the corresponding optimal model parameters for each set of measurement data through the method of multi-layer perceptron (MLP) network training, thereby improving the imaging quality. At the same time, the iterative soft threshold algorithm (ISTA) is used in the sparse coding stage to improve the convergence speed. The reconstruction results show that compared with the K-SVD algorithm and Total Variation (TV) algorithm, the reconstruction error of the DK-SVD method is smaller, and the irregular and sharp inclusions can be accurately reconstructed. Image artifacts are also greatly reduced.
Citation
Qi Wang, Xin Ding, Ming Ma, Xiuyan Li, Xiaojie Duan, and Jianming Wang, "Research on Sparse Imaging Method of Electrical Impedance Tomography Based on DK-SVD," Progress In Electromagnetics Research M, Vol. 114, 13-25, 2022.
doi:10.2528/PIERM22071604
References

1. Hong, S., K. Lee, U. Ha, H. Kim, Y. Lee, Y. Kim, and H.-J. Yoo, "A 4.9 mΩ-sensitivity mobile electrical impedance tomography IC for early breast-cancer detection system," IEEE Journal of Solid-State Circuits, Vol. 50, No. 1, 245-257, 2015.
doi:10.1109/JSSC.2014.2355835

2. Fabrizi, L., A. McEwan, T. Oh, E. J. Woo, and D. S. Holder, "A comparison of two EIT systems suitable for imaging impedance changes in epilepsy," Physiological Measurement, Vol. 30, No. 6, S103-S120, 2009.
doi:10.1088/0967-3334/30/6/S07

3. Nissinen, A., J. P. Kaipio, M. Vauhkonen, and V. Kolehmainen, "Contrast enhancement in EIT imaging of the brain," Physiological Measurement, Vol. 37, No. 1, 1-24, 2016.
doi:10.1088/0967-3334/37/1/1

4. Jang, G. Y., G. Ayoub, Y. E. Kim, T. I. Oh, C. R. Chung, G. Y. Suh, and E. J. Woo, "Integrated EIT system for functional lung ventilation imaging," BioMedical Engineering OnLine, Vol. 18, No. 1, 1-18, 2019.
doi:10.1186/s12938-019-0701-y

5. Bradley, D. and J. Bagnell, "Differential sparse coding," Proc. Conf. Neural Information Processing Systems, 2008.

6. Wang, J., J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong, "Locality-constrained linear coding for image classification," 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 3360-3367, 2010.

7. Zylberberg, J., J. T. Murphy, and M. R. DeWeese, "A sparse codingmodel with synaptically local plasticity and spiking neurons can account for the diverse shapes of V1 simple cell receptivefields," PLOS Comput. Biol., Vol. 7, No. 10, e1002250, 2011.
doi:10.1371/journal.pcbi.1002250

8. Davis, G., S. Mallat, and M. Avellaneda, "Adaptive greedy approximations," J. Construct. Approx., Vol. 13, 57-98, 1997.
doi:10.1007/BF02678430

9. Aharon, M., M. Elad, and A. Bruckstein, "K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation," IEEE Transactions on Signal Processing, Vol. 54, No. 11, 4311-4322, Nov. 2006, doi: 10.1109/TSP.2006.881199.
doi:10.1109/TSP.2006.881199

10. Yang, J., Y. Zhang, and W. Yin, "A fast alternating direction method for TVL1-L2 signal reconstruction from partial fourier data," IEEE Journal of Selected Topics in Signal Processing, Vol. 4, No. 2, 288-297, 2010.
doi:10.1109/JSTSP.2010.2042333

11. Needell, D. and R. Vershynin, "Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching pursuit," IEEE Journal of Selected Topics in Signal Processing, Vol. 4, No. 2, 310-316, 2010.
doi:10.1109/JSTSP.2010.2042412

12. Wang, Q., Z. Lian, J. Wang, Q. Chen, Y. Sun, X. Li, X. Duan, Z. Cui, and H. Wang, "Accelerated reconstruction of electrical impedance tomography images via patch based sparse representation," Review of Scientific Instruments, Vol. 87, No. 11, 114707, 2016.
doi:10.1063/1.4966998

13. Wang, Q., P. Zhang, J. Wang, Q. Chen, Z. Lian, X. Li, Y. Sun, X. Duan, Z. Cui, B. Sun, and H.Wang, "Patch based sparse reconstruction for electrical impedance tomography," Sensor Review, Vol. 37, No. 3, 257-269, 2017.
doi:10.1108/SR-07-2016-0126

14. Li, X., J. Zhang, J. Wang, Q. Wang, and X. Duan, "Recursive least squares dictionary learning algorithm for electrical impedance tomography," Progress In Electromagnetics Research C, Vol. 97, 151-162, 2019.
doi:10.2528/PIERC19081001

15. Wang, C., D. Sun, and K. C. Toh, "Solving log-determinant optimization problems by a Newton-CG primal proximal point algorithm," Siam Journal on Optimization, Vol. 20, No. 6, 2994-3013, 2009.
doi:10.1137/090772514

16. Hou, W. and Y. Mo, "Image reconstruction in electrical impedance tomography based on genetic algorithm," Shengwu Yixue Gongchengxue Zazhi/Journal of Biomedical Engineering, Vol. 20, No. 1, 107-110, 2003.

17. Marquina, A. and S. Osher, "Image super-resolution by TV-regularization and Bregman iteration," Journal of Scientific Computing, Vol. 37, No. 3, 367-382, 2008.
doi:10.1007/s10915-008-9214-8

18. Yu, C., S. Fan, Y. Bo, and D. Chen, "A novel quasi-newton image reconstruction algorithm for electrical capacitance tomography system," 2009 ISECS International Colloquium on Computing, Communication, Control, and Management, 89-93, 2009.
doi:10.1109/CCCM.2009.5267974

19. Dai, T. and A. Adler, "Electrical impedance tomography reconstruction using l1 norms for data and image terms," 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2721-2724, 2008.
doi:10.1109/IEMBS.2008.4649764

20. Gehre, M., T. Kluth, A. Lipponen, B. Jin, A. Seppänen, J. P. Kaipio, and P. Maassa, "Sparsity reconstruction in electrical impedance tomography: An experimental evaluation," Journal of Computational and Applied Mathematics, Vol. 236, No. 8, 2126-2136, 2012.
doi:10.1016/j.cam.2011.09.035

21. Gehre, M., T. Kluth, C. Sebu, and P. Maass, "Sparse 3D reconstructions in electrical impedance tomography using real data," Inverse Problems in Science & Engineering, Vol. 22, No. 1, 31-44, 2014.
doi:10.1080/17415977.2013.827183

22. Theertham, G. T., S. K. Varanasi, and P. Jampana, "Sparsity constrained reconstruction for electrical impedance tomography," IFAC-PapersOnLine, Vol. 53, No. 2, 355-360, 2020.
doi:10.1016/j.ifacol.2020.12.185

23. Liu, S., R. Cao, Y. Huang, T. Ouypornkochagorn, and J. Jia, "Time sequence learning for electrical impedance tomography using bayesian spatiotemporal priors," IEEE Transactions on Instrumentation and Measurement, Vol. 69, No. 9, 6045-6057, 2020.
doi:10.1109/TIM.2020.2972172

24. Shi, Y., Y. Wu, M. Wang, Z. Tian, X. Kong, and X. He, "Sparse image reconstruction of intracerebral hemorrhage with electrical impedance tomography," Journal of Medical Imaging, Vol. 8, No. 1, 014501, 2021.
doi:10.1117/1.JMI.8.1.014501

25. Hu, G., J. Lin, G. Wang, and R. He, "Sparse reconstruction based channel estimation for underwater piezo-acoustic backscatter systems," 2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring), 1-5, 2021.

26. Li, S., H. Wang, J. N. Chen, and Z. Cui, "An improved sparse reconstruction algorithm based on singular value decomposition for electrical resistance tomography," 2021 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), 1-6, 2021.

27. Kou, S. and X. Feng, "Angle-micro-Doppler frequency image of underwater target multi-highlight combining with sparse reconstruction," Applied Acoustics, Vol. 188, 108563, 2022.
doi:10.1016/j.apacoust.2021.108563

28. Donoho, D. L., "Compressed sensing," IEEE Trans. Inf. Theory, Vol. 52, 1289-1306, Apr. 2006.
doi:10.1109/TIT.2006.871582

29. Ye, J. M., H. G. Wang, and W. Q. Yang, "Image reconstruction for electrical capacitance tomography based on sparse representation," IEEE Transactions on Instrumentation and Measurement, Vol. 64, No. 1, 89-102, Jan. 2015.
doi:10.1109/TIM.2014.2329738

30. Jin, B., T. Khan, and P. Maass, "A reconstruction algorithm for electrical impedance tomography based on sparsity regularization," Int. J. Numer. Methods Eng., Vol. 89, 337-353, Jan. 2012.
doi:10.1002/nme.3247

31. Qu, X. B., Y. Hou, F. Lam, D. Guo, J. H. Zhong, and Z. Chen, "Magnetic resonance image reconstruction from undersampled measurements using a patch-based nonlocal operator," Med. Image Anal., Vol. 18, 843-856, Aug. 2014.
doi:10.1016/j.media.2013.09.007

32. Elad, M. and M. Aharon, "Image denoising via sparse and redundant representations over learned dictionaries," IEEE Trans. Image Process., Vol. 12, 3736-3745, 2006.
doi:10.1109/TIP.2006.881969

33. Wang, Q., K. Sun, J. Wang, and R. Zhang, "Reconstruction of EIT images via patch based sparse representation over learned dictionaries," 2015 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings, 2044-2048, 2015.
doi:10.1109/I2MTC.2015.7151597

34. Wang, M. and W. Yin, "Electrical impedance tomography,", US06940286B2, 2005.

35. Donoho, D. L. and M. Elad, "Optimally sparse representation in general (nonorthogonal) dictionaries via l1 minimization," Proc. Nat. Acad. Sci. USA, Vol. 100, No. 5, 2197-2202, Mar. 2003.
doi:10.1073/pnas.0437847100

36. Donoho, D. L., M. Elad, and V. N. Temlyakov, "Stable recovery of sparse overcomplete representations in the presence of noise," IEEE Trans. Inf. Theory, Vol. 52, No. 1, 6-18, Jan. 2006.
doi:10.1109/TIT.2005.860430

37. Daubechies, I., M. Defrise, and C. D. Mol, "An iterative thresholding algorithm for linear inverse problems with a sparsity constraint," Commun. Pure Appl. Math., Vol. 57, No. 11, 1413-1457, 2004.
doi:10.1002/cpa.20042

38. Xiang, C., S. Ding, and T. H. Lee, "Geometrical interpretation and architecture selection of MLP," IEEE Transactions on Neural Networks, Vol. 16, No. 1, 84-96, 2005, doi:10.1109/tnn.2004.836197.
doi:10.1109/TNN.2004.836197

39. Lacrama, D. L., V. Gherhes, F. Alexa, and T. M. Karnyanszky, "Automatic survey processing using a MLP neural net," 10th Symposium on Neural Network Applications in Electrical Engineering, 123-126, 2010.
doi:10.1109/NEUREL.2010.5644092