1. Hong, S., K. Lee, U. Ha, H. Kim, Y. Lee, Y. Kim, and H.-J. Yoo, "A 4.9 mΩ-sensitivity mobile electrical impedance tomography IC for early breast-cancer detection system," IEEE Journal of Solid-State Circuits, Vol. 50, No. 1, 245-257, 2015.
doi:10.1109/JSSC.2014.2355835 Google Scholar
2. Fabrizi, L., A. McEwan, T. Oh, E. J. Woo, and D. S. Holder, "A comparison of two EIT systems suitable for imaging impedance changes in epilepsy," Physiological Measurement, Vol. 30, No. 6, S103-S120, 2009.
doi:10.1088/0967-3334/30/6/S07 Google Scholar
3. Nissinen, A., J. P. Kaipio, M. Vauhkonen, and V. Kolehmainen, "Contrast enhancement in EIT imaging of the brain," Physiological Measurement, Vol. 37, No. 1, 1-24, 2016.
doi:10.1088/0967-3334/37/1/1 Google Scholar
4. Jang, G. Y., G. Ayoub, Y. E. Kim, T. I. Oh, C. R. Chung, G. Y. Suh, and E. J. Woo, "Integrated EIT system for functional lung ventilation imaging," BioMedical Engineering OnLine, Vol. 18, No. 1, 1-18, 2019.
doi:10.1186/s12938-019-0701-y Google Scholar
5. Bradley, D. and J. Bagnell, "Differential sparse coding," Proc. Conf. Neural Information Processing Systems, 2008. Google Scholar
6. Wang, J., J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong, "Locality-constrained linear coding for image classification," 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 3360-3367, 2010. Google Scholar
7. Zylberberg, J., J. T. Murphy, and M. R. DeWeese, "A sparse codingmodel with synaptically local plasticity and spiking neurons can account for the diverse shapes of V1 simple cell receptivefields," PLOS Comput. Biol., Vol. 7, No. 10, e1002250, 2011.
doi:10.1371/journal.pcbi.1002250 Google Scholar
8. Davis, G., S. Mallat, and M. Avellaneda, "Adaptive greedy approximations," J. Construct. Approx., Vol. 13, 57-98, 1997.
doi:10.1007/BF02678430 Google Scholar
9. Aharon, M., M. Elad, and A. Bruckstein, "K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation," IEEE Transactions on Signal Processing, Vol. 54, No. 11, 4311-4322, Nov. 2006, doi: 10.1109/TSP.2006.881199.
doi:10.1109/TSP.2006.881199 Google Scholar
10. Yang, J., Y. Zhang, and W. Yin, "A fast alternating direction method for TVL1-L2 signal reconstruction from partial fourier data," IEEE Journal of Selected Topics in Signal Processing, Vol. 4, No. 2, 288-297, 2010.
doi:10.1109/JSTSP.2010.2042333 Google Scholar
11. Needell, D. and R. Vershynin, "Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching pursuit," IEEE Journal of Selected Topics in Signal Processing, Vol. 4, No. 2, 310-316, 2010.
doi:10.1109/JSTSP.2010.2042412 Google Scholar
12. Wang, Q., Z. Lian, J. Wang, Q. Chen, Y. Sun, X. Li, X. Duan, Z. Cui, and H. Wang, "Accelerated reconstruction of electrical impedance tomography images via patch based sparse representation," Review of Scientific Instruments, Vol. 87, No. 11, 114707, 2016.
doi:10.1063/1.4966998 Google Scholar
13. Wang, Q., P. Zhang, J. Wang, Q. Chen, Z. Lian, X. Li, Y. Sun, X. Duan, Z. Cui, B. Sun, and H.Wang, "Patch based sparse reconstruction for electrical impedance tomography," Sensor Review, Vol. 37, No. 3, 257-269, 2017.
doi:10.1108/SR-07-2016-0126 Google Scholar
14. Li, X., J. Zhang, J. Wang, Q. Wang, and X. Duan, "Recursive least squares dictionary learning algorithm for electrical impedance tomography," Progress In Electromagnetics Research C, Vol. 97, 151-162, 2019.
doi:10.2528/PIERC19081001 Google Scholar
15. Wang, C., D. Sun, and K. C. Toh, "Solving log-determinant optimization problems by a Newton-CG primal proximal point algorithm," Siam Journal on Optimization, Vol. 20, No. 6, 2994-3013, 2009.
doi:10.1137/090772514 Google Scholar
16. Hou, W. and Y. Mo, "Image reconstruction in electrical impedance tomography based on genetic algorithm," Shengwu Yixue Gongchengxue Zazhi/Journal of Biomedical Engineering, Vol. 20, No. 1, 107-110, 2003. Google Scholar
17. Marquina, A. and S. Osher, "Image super-resolution by TV-regularization and Bregman iteration," Journal of Scientific Computing, Vol. 37, No. 3, 367-382, 2008.
doi:10.1007/s10915-008-9214-8 Google Scholar
18. Yu, C., S. Fan, Y. Bo, and D. Chen, "A novel quasi-newton image reconstruction algorithm for electrical capacitance tomography system," 2009 ISECS International Colloquium on Computing, Communication, Control, and Management, 89-93, 2009.
doi:10.1109/CCCM.2009.5267974 Google Scholar
19. Dai, T. and A. Adler, "Electrical impedance tomography reconstruction using l1 norms for data and image terms," 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2721-2724, 2008.
doi:10.1109/IEMBS.2008.4649764 Google Scholar
20. Gehre, M., T. Kluth, A. Lipponen, B. Jin, A. Seppänen, J. P. Kaipio, and P. Maassa, "Sparsity reconstruction in electrical impedance tomography: An experimental evaluation," Journal of Computational and Applied Mathematics, Vol. 236, No. 8, 2126-2136, 2012.
doi:10.1016/j.cam.2011.09.035 Google Scholar
21. Gehre, M., T. Kluth, C. Sebu, and P. Maass, "Sparse 3D reconstructions in electrical impedance tomography using real data," Inverse Problems in Science & Engineering, Vol. 22, No. 1, 31-44, 2014.
doi:10.1080/17415977.2013.827183 Google Scholar
22. Theertham, G. T., S. K. Varanasi, and P. Jampana, "Sparsity constrained reconstruction for electrical impedance tomography," IFAC-PapersOnLine, Vol. 53, No. 2, 355-360, 2020.
doi:10.1016/j.ifacol.2020.12.185 Google Scholar
23. Liu, S., R. Cao, Y. Huang, T. Ouypornkochagorn, and J. Jia, "Time sequence learning for electrical impedance tomography using bayesian spatiotemporal priors," IEEE Transactions on Instrumentation and Measurement, Vol. 69, No. 9, 6045-6057, 2020.
doi:10.1109/TIM.2020.2972172 Google Scholar
24. Shi, Y., Y. Wu, M. Wang, Z. Tian, X. Kong, and X. He, "Sparse image reconstruction of intracerebral hemorrhage with electrical impedance tomography," Journal of Medical Imaging, Vol. 8, No. 1, 014501, 2021.
doi:10.1117/1.JMI.8.1.014501 Google Scholar
25. Hu, G., J. Lin, G. Wang, and R. He, "Sparse reconstruction based channel estimation for underwater piezo-acoustic backscatter systems," 2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring), 1-5, 2021. Google Scholar
26. Li, S., H. Wang, J. N. Chen, and Z. Cui, "An improved sparse reconstruction algorithm based on singular value decomposition for electrical resistance tomography," 2021 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), 1-6, 2021. Google Scholar
27. Kou, S. and X. Feng, "Angle-micro-Doppler frequency image of underwater target multi-highlight combining with sparse reconstruction," Applied Acoustics, Vol. 188, 108563, 2022.
doi:10.1016/j.apacoust.2021.108563 Google Scholar
28. Donoho, D. L., "Compressed sensing," IEEE Trans. Inf. Theory, Vol. 52, 1289-1306, Apr. 2006.
doi:10.1109/TIT.2006.871582 Google Scholar
29. Ye, J. M., H. G. Wang, and W. Q. Yang, "Image reconstruction for electrical capacitance tomography based on sparse representation," IEEE Transactions on Instrumentation and Measurement, Vol. 64, No. 1, 89-102, Jan. 2015.
doi:10.1109/TIM.2014.2329738 Google Scholar
30. Jin, B., T. Khan, and P. Maass, "A reconstruction algorithm for electrical impedance tomography based on sparsity regularization," Int. J. Numer. Methods Eng., Vol. 89, 337-353, Jan. 2012.
doi:10.1002/nme.3247 Google Scholar
31. Qu, X. B., Y. Hou, F. Lam, D. Guo, J. H. Zhong, and Z. Chen, "Magnetic resonance image reconstruction from undersampled measurements using a patch-based nonlocal operator," Med. Image Anal., Vol. 18, 843-856, Aug. 2014.
doi:10.1016/j.media.2013.09.007 Google Scholar
32. Elad, M. and M. Aharon, "Image denoising via sparse and redundant representations over learned dictionaries," IEEE Trans. Image Process., Vol. 12, 3736-3745, 2006.
doi:10.1109/TIP.2006.881969 Google Scholar
33. Wang, Q., K. Sun, J. Wang, and R. Zhang, "Reconstruction of EIT images via patch based sparse representation over learned dictionaries," 2015 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings, 2044-2048, 2015.
doi:10.1109/I2MTC.2015.7151597 Google Scholar
34. Wang, M. and W. Yin, "Electrical impedance tomography,", US06940286B2, 2005. Google Scholar
35. Donoho, D. L. and M. Elad, "Optimally sparse representation in general (nonorthogonal) dictionaries via l1 minimization," Proc. Nat. Acad. Sci. USA, Vol. 100, No. 5, 2197-2202, Mar. 2003.
doi:10.1073/pnas.0437847100 Google Scholar
36. Donoho, D. L., M. Elad, and V. N. Temlyakov, "Stable recovery of sparse overcomplete representations in the presence of noise," IEEE Trans. Inf. Theory, Vol. 52, No. 1, 6-18, Jan. 2006.
doi:10.1109/TIT.2005.860430 Google Scholar
37. Daubechies, I., M. Defrise, and C. D. Mol, "An iterative thresholding algorithm for linear inverse problems with a sparsity constraint," Commun. Pure Appl. Math., Vol. 57, No. 11, 1413-1457, 2004.
doi:10.1002/cpa.20042 Google Scholar
38. Xiang, C., S. Ding, and T. H. Lee, "Geometrical interpretation and architecture selection of MLP," IEEE Transactions on Neural Networks, Vol. 16, No. 1, 84-96, 2005, doi:10.1109/tnn.2004.836197.
doi:10.1109/TNN.2004.836197 Google Scholar
39. Lacrama, D. L., V. Gherhes, F. Alexa, and T. M. Karnyanszky, "Automatic survey processing using a MLP neural net," 10th Symposium on Neural Network Applications in Electrical Engineering, 123-126, 2010.
doi:10.1109/NEUREL.2010.5644092 Google Scholar