Vol. 113
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-09-22
Compact Embedded Dual Band EBG Structure with Low SAR for Wearable Antenna Application
By
Progress In Electromagnetics Research M, Vol. 113, 199-211, 2022
Abstract
In this paper, a rectangular embedded dual band Electromagnetic Band Gap (EBG) structure at frequencies 2.45/5.8 GHz useful in industrial, scientific, and medical (ISM) band for various wearable applications is proposed. The main intent of this work is to design a dual band EBG to reduce specific absorption rate (SAR). The unit cell which is a part of the EBG structure is formed using a rectangular patch. It has a U shaped rectangular slot and a stretched strip with a rectangular patch at end. EBG unit cell simulation is accomplished by solving eigen mode problem in High Frequency Structure Simulator (HFSS). EBG structure has to be suitably designed and fine tuned for specified band stop property to reduce surface waves. It must improve front to back ratio (FBR). With placing antenna on human body, frequency detuning occurs which is undesirable thus emphasizing the need of improvement in impedance bandwidth. This improvement can be achieved by a suitable design of EBG structure. In this work, the proposed EBG structure is integrated with a dual-band monopole antenna at frequencies 2.45/5.8 GHz for wearable application. The evaluation of antenna performance on a four layer body model is carried out. Simulations are used to demonstrate EBG array structure effectiveness for the reduction of Specific Absorption Rate (SAR) on the four layer body model. Computed SAR values for tissue in 1 g and 10 g are within standard prescribed limits. It is concluded that the proposed dual band antenna is appropriate for wearable applications. Proposed EBG array is fabricated and integrated with a twin E-shaped monopole antenna. The measurement of reflection coefficient, radiation pattern, and transmission coefficient of fabricated EBG array is carried out. The measured and simulated results show good agreement. Antenna performance in the event of bending condition and on-body condition is assessed.
Citation
Vidya R. Keshwani Pramod P. Bhavarthe Surendra S. Rathod , "Compact Embedded Dual Band EBG Structure with Low SAR for Wearable Antenna Application," Progress In Electromagnetics Research M, Vol. 113, 199-211, 2022.
doi:10.2528/PIERM22071704
http://www.jpier.org/PIERM/pier.php?paper=22071704
References

1. Zhang, K., P. J. Soh, and S. Yan, "Design of a compact dual-band textile antenna based on metasurface," IEEE Transactions on Biomedical Circuits and Systems, Vol. 16, No. 2, 211-221, 2022, doi: 10.1109/TBCAS.2022.3151243.
doi:

504 Gateway Time-out


2. Bhattacharjee, S., S. Maity, S. R. B. Chaudhuri, and M. Mitra, "A compact dual-band dual-polarized omnidirectional antenna for on-body applications," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 8, 5044-5053, Aug. 2019, doi: 10.1109/TAP.2019.2891633.

3. Joshi, R., E. F. N. Mohd Hussin, P. J. Soh, Mohd F. Jamlos, H. Lago, A. A. Al-Hadi, and S. K. Podilchak, "Dual-band, dual-sense textile antenna with AMC backing for localization using GPS and WBAN/WLAN," IEEE Access, Vol. 8, 89468-89478, 2020, doi: 10.1109/ACCESS.2020.2993371.
doi:

4. El Atrash, M., M. A. Abdalla, and H. M. Elhennawy, "A wearable dual-band low profile high gain low SAR antenna AMC-backed for WBAN applications," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 10, 6378-6388, Oct. 2019, doi: 10.1109/TAP.2019.2923058.

5. Velan, S., S. E. Florence, K. Malathi, S. Aswathy, R. Chinnambeti, S. Ramprabhu, and P. J. Kizhekke, "Dual-band EBG integrated monopole antenna deploying fractal geometry for wearable applications," IEEE Antennas Wireless Propag. Lett., Vol. 14, 249-252, 2015.

6. Ashyap, A. Y. I., Z. Z. Abidin, S. H. Dahlan, H. Majid, S. M. Shah, M. R. Kamarudin, and A. Alomainy, "Compact and low-profile textile EBG-based antenna for wearable medical applications," IEEE Antennas and Propagation Magazine, Vol. 16, No. 1, 2550-2553, 2017.

7. Guido, K. and A. Kiourti, "Wireless wearables and implants: A dosimetry review," Bioelectromagnetics, Vol. 41, 3-20, 2020.

8. Ashyap, A. Y. I., S. H. B. Dahlan, Z. Z. Abidin, M. I. Abbasi, K. R. Kamarudin, H. A. Majid, M. H. Dahri, M. H. Jamaluddin, and A. Alomainy, "An overview of electromagnetic band-gap integrated wearable antennas," IEEE Access, Vol. 8, 7641-7658, Jan. 2020, doi: 10.1109/ACCESS.2020.2963997.

9. Zhu, S. and R. Langley, "Dual-band wearable textile antenna on an EBG substrate," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 4, 926-935, Apr. 2009.

10. Yan, S., P. J. Soh, and G. A. E. Vandenbosch, "Low profile dual band textile antenna with artificial magnetic conductor plane," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 12, 6487-6490, Dec. 2014.

11. Yan, S., P. J. Soh, and G. A. E. Vandenbosch, "Compact all-textile dualband antenna loaded with metamaterial inspired structure," IEEE Antennas Wireless Propag. Lett., Vol. 14, 1486-1489, 2014.

12. Qiang, B. and R. J. Langley, "Crumpled integrated AMC antenna," Electronics Letters, Vol. 45, 662-663, 2009, doi: 10.1049/el.2009.0864.

13. Gao, G.-P., B. Hu, S.-F. Wang, and C. Yang, "Wearable circular ring slot antenna with EBG structure for wireless body area network," IEEE Antennas Wireless Propag. Lett., Vol. 17, No. 3, 434-437, Mar. 2018.

14. Gao, G., B. Hu, S. Wang, and C. Yang, "Wearable planar inverted-F antenna with stable characteristic and low specific absorption rate," Microwave and Optical Technology Letters, Vol. 60, No. 4, 876-882, Apr. 2018.

15. El May, W., I. Sfar, J. M. Ribero, and L. Osman, "Design of low-profile and safe low SAR tri-band textile EBG-based antenna for IoT applications," Progress In Electromagnetics Research Letters, Vol. 98, 85-94, 2021.

16. Mantash, M., A. C. Tarot, S. Collardey, and K. Mahdjoubi, "Design methodology for wearable antenna on artificial magnetic conductor using stretch conductive fabric," Electronics Letters, Vol. 52, 95-96, 2016.

17. Afridi, A., S. Ullah, S. Khan, A. Ahmed, A. H. Khalil, and M. A. Tarar, "Design of dual band wearable antenna using metamaterials," Journal of Microwave Power and Electromagnetic Energy, Vol. 47, 126-137, 2013.

18. Mersani, A., O. Lotfi, and J.-M. Ribero, "Design of a textile antenna with artificial magnetic conductor for wearable applications," Microwave and Optical Technology Letters, Vol. 60, 1343-1349, 2018, 10.1002/mop.31158.

19. Dalal, P. and S. K. Dhull, "Eight-shaped polarization-dependent electromagnetic bandgap structure and its application as polarization reflector," International Journal of Microwave and Wireless Technologies, 1-9, 2021, doi: 10.1017/S1759078721000271.

20. Yang, F. and Y. Rahmat Samii, Electromagnetic Band Gap Structures in Antenna Engineering (The Cambridge RF and Microwave Engineering Series), Cambridge University Press, Cambridge, 2008, doi: 10.1017/CBO9780511754531.

21. Keshwani, V. R., P. P. Bhavarthe, and S. S. Rathod, "Eight shape electromagnetic band gap structure for bandwidth improvement of wearable antenna," Progress In Electromagnetics Research C, Vol. 116, 37-49, 2021.

22. Keshwani, V. R. and S. S. Rathod, "Assessment of SAR reduction in wearable textile antenna," 2021 International Conference on Communication Information and Computing Technology (ICCICT), 1-5, 2021, doi: 10.1109/ICCICT50803.2021.9510174.

23. Gabriel, C., "Compilation of the dielectric properties of body tissues at RF and microwave fre-quencies," Report N.AL/OE-TR-1996-0037, Occupational and Environmental Health Directorate, Radiofrequency Radiation Division, Brooks Air Force Base, Texas, USA, 1996.