1. Roos, F., J. Bechter, C. Knill, B. Schweizer, and C. Waldschmidt, "Radar sensors for autonomous driving: Modulation schemes and interference mitigation," IEEE Microw. Mag., Vol. 20, No. 9, 58-72, 2019.
doi:10.1109/MMM.2019.2922120 Google Scholar
2. Hakobyan, G. and B. Yang, "High-performance automotive radar: A review of signal processing algorithms and modulation schemes," IEEE Signal Process. Mag., Vol. 36, No. 5, 32-44, 2019.
doi:10.1109/MSP.2019.2911722 Google Scholar
3. Waldschmidt, C., J. Hasch, and W. Menzel, "Automotive radar --- From first efforts to future systems," IEEE J. Microw., Vol. 1, No. 1, 135-148, 2021.
doi:10.1109/JMW.2020.3033616 Google Scholar
4. Bechter, J., F. Roos, M. Rahman, and C. Waldschmidt, "Automotive radar interference mitigation using a sparse sampling approach," Proc. Eur. Radar Conf. (EURAD), 90-93, 2017. Google Scholar
5. Aydogdu, C., M. F. Keskin, N. Garcia, H. Wymeersch, and D. W. Bliss, "Radchat: Spectrum sharing for automotive radar interference mitigation," IEEE Trans. Intell. Transp. Sys., Vol. 22, No. 1, 416-429, 2021.
doi:10.1109/TITS.2019.2959881 Google Scholar
6. Aydogdu, C., M. F. Keskin, G. K. Carvajal, O. Eriksson, H. Hellsten, H. Herbertsson, E. Nilsson, M. Rydstrom, K. Vanas, and H. Wymeersch, "Radar interference mitigation for automated driving: Exploring proactive strategies," IEEE Signal Process. Mag., Vol. 37, No. 4, 72-84, 2020.
doi:10.1109/MSP.2020.2969319 Google Scholar
7. Al-Hourani, A., R. J. Evans, S. Kandeepan, B. Moran, and H. Eltom, "Stochastic geometry methods for modeling automotive radar interference," IEEE Transactions on Intelligent Transportation Systems, Vol. 19, No. 2, 333-344, 2018.
doi:10.1109/TITS.2016.2632309 Google Scholar
8. IEEE Veh. Tech. Mag., Special Issue on V2V Communications 2(4), Dec. 2007.
9. Karagiannis, G., O. Altintas, E. Ekici, G. Heijenk, B. Jarupan, K. Lin, and T. Weil, "Vehicular networking: A survey and tutorial on requirements, architectures, challenges, standards and solutions," IEEE Communications Surveys Tutorials, Vol. 13, No. 4, 584-616, 2011.
doi:10.1109/SURV.2011.061411.00019 Google Scholar
10. 3GPP, Service requirements for enhanced V2X scenarios (3GPP TS 22.186 version 15.3.0 Release 15), 2020.
11. IEEE "IEEE Standard for Information technology --- Local and metropolitan area networks --- Specific requirements --- Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 6: Wireless Access in Vehicular Environments,", IEEE Std 802.11p-2010 (Amendment to IEEE Std 802.11-2007), 1-51, 2010. Google Scholar
12. Manolakis, K. and W. Xu, "Time synchronization for multi-link D2D/V2X communication," Proc. IEEE 89th Veh. Technol. Conf. (VTC-Fall), 1-6, 2016. Google Scholar
13. ETSI "Intelligent Transport Systems (ITS); Performance Evaluation of Self-Organizing TDMA as Medium Access Control Method Applied to ITS,", Access Layer Part, 2011-2012. Google Scholar
14. Sturm, C. and W. Wiesbeck, "Waveform design and signal processing aspects for fusion of wireless communications and radar sensing," Proc. IEEE, Vol. 99, No. 7, 1236-1259, 2011.
doi:10.1109/JPROC.2011.2131110 Google Scholar
15. De Oliveira, L. G., B. Nuss, M. B. Alabd, A. Diewald, M. Pauli, and T. Zwick, "Joint radar-communication systems: Modulation schemes and system design," IEEE Trans. Microw. Theory Techn., Mar. 2022. Google Scholar
16. Hassanien, A., M. G. Amin, E. Aboutanios, and B. Himed, "Dual-function radar communication systems: A solution to the spectrum congestion problem," IEEE Signal Process. Mag., Vol. 36, No. 5, 115-126, 2019.
doi:10.1109/MSP.2019.2900571 Google Scholar
17. Sit, Y. L., C. Sturm, T. Zwick, L. Reichardt, and W. Wiesbeck, "The OFDM joint radar-communication system: An overview," The 3rd Int. Conf. on Adv. in Satell. and Space Commun., SPACOMM 2011, 69-74, Budapest, Hungary, Apr. 17-22, 2011. Google Scholar
18. Braun, K. M. OFDM radar algorithms in mobile communication networks, Ph.D. dissertation, Karlsruher Institut fur Technologie (KIT), 2014.
19. De Oliveira, L. G., M. B. Alabd, B. Nuss, and T. Zwick, "An OCDM radar-communication system," 2020 14th Eur. Conf. Antennas Propag., 1-5, 2020. Google Scholar
20. De Oliveira, L. G., B. Nuss, M. B. Alabd, Y. Li, L. Yu, and T. Zwick, "MIMO-OCDM-based joint radar sensing and communication," 2021 15th Eur. Conf. Antennas Propag., 1-5, 2021. Google Scholar
21. Schmidl, T. and D. Cox, "Robust frequency and timing synchronization for OFDM," IEEE Trans. Commun., Vol. 45, No. 12, 1613-1621, 1997.
doi:10.1109/26.650240 Google Scholar
22. Ouyang, X. Digital signal processing for fiber-optic communication systems, Ph.D. dissertation, University College Cork, Ireland, 2017.
23., TI, AWR2243 Single-Chip 76- to 81-GHz FMCW Transceiver, 2020. Google Scholar
24. Barrenechea, P., F. Elferink, and J. Janssen, "FMCW radar with broadband communication capability," Proc. Eur. Radar Conf. (EURAD), 130-133, 2007. Google Scholar
25. Scheiblhofer, W., R. Feger, A. Haderer, and A. Stelzer, "Method to embed a data-link on FMCW chirps for communication between cooperative 77-GHz radar stations," Proc. Eur. Radar Conf. (EURAD), 181-184, 2015. Google Scholar
26. Lampel, F., R. F. Tigrek, A. Alvarado, and F. M. Willems, "A performance enhancement technique for a joint FMCW RadCom system," Proc. Eur. Radar Conf. (EURAD), 169-172, 2019. Google Scholar
27. Dwivedi, S., A. N. Barreto, P. Sen, and G. Fettweis, "Target detection in joint frequency modulated continuous wave (FMCW) radar-communication system," Proc. 16th Int. Symp. on Wireless Commun. Syst. (ISWCS), 277-282, 2019. Google Scholar
28. Dwivedi, S., M. Zoli, A. N. Barreto, P. Sen, and G. Fettweis, "Secure joint communications and sensing using chirp modulation," 2nd 6G Wireless Summit (6G SUMMIT), 1-5, 2020. Google Scholar
29. Alabd, M. B., B. Nuss, C. Winkler, and T. Zwick, "Partial chirp modulation technique for chirp sequence based radar communications," Proc. Eur. Radar Conf. (EURAD), 173-176, 2019. Google Scholar
30. Lampel, F., F. Uysal, F. Tigrek, S. Orru, A. Alvarado, F. Willems, and A. Yarovoy, "System level synchronization of phase-coded FMCW automotive radars for RadCom," 2020 14th Eur. Conf. Antennas Propag., 1-5, 2020. Google Scholar
31. Bernier, C., F. Dehmas, and N. Deparis, "Low complexity lora frame synchronization for ultra-low power software-defined radios," IEEE Trans. Commun., Vol. 68, No. 5, 3140-3152, 2020.
doi:10.1109/TCOMM.2020.2974464 Google Scholar
32. Martinez, A. B., A. Kumar, M. Chafii, and G. Fettweis, "A chirp-based frequency synchronization approach for flat fading channels," 2020 2nd 6G Wireless Summit (6G SUMMIT), 1-5, 2020. Google Scholar
33. Aydogdu, C., M. F. Keskin, and H. Wymeersch, "Automotive radar interference mitigation via multi-hop cooperative radar communications," 2020 17th European Radar Conference (EuRAD), 270-273, 2021.
doi:10.1109/EuRAD48048.2021.00076 Google Scholar
34. Winkler, V., "Novel waveform generation principle for short-range FMCW-radars," Proc. German Microw. Conf., 1-4, 2009. Google Scholar
35. Kronauge, M. and H. Rohling, "New chirp sequence radar waveform," IEEE Trans. Aerosp. Electron. Syst., Vol. 50, No. 4, 2870-2877, 2014.
doi:10.1109/TAES.2014.120813 Google Scholar
36., TI, LMX2491 6.4-GHz Low Noise RF PLL With Ramp/ChirpGeneration, 2017.
doi:10.1109/TAES.2014.120813 Google Scholar
37. Winkler, V., "Range doppler detection for automotive FMCW radars," Proc. Eur. Radar Conf. (EURAD), 166-169, 2007. Google Scholar
38. Alabd, M. B., L. G. de Oliveira, B. Nuss, W. Wiesbeck, and T. Zwick, "Time-frequency shift modulation for chirp sequence based radar communications," Proc. IEEE MTT-S Int. Conf. on Microw. for Intell. Mobility (ICMIM), 1-4, 2020. Google Scholar
39. Alabd, M. B., B. Nuss, L. G. de Oliveira, A. Diewald, Y. Li, and T. Zwick, "Modified pulse position modulation for joint radar communication based on chirp sequence," IEEE Microwave and Wireless Components Letters, 1-4, 2022. Google Scholar
40. Krawczyk, M. and T. Gerkmann, "STFT phase reconstruction in voiced speech for an improved single-channel speech enhancement," IEEE/ACM Trans. on Audio, Speech, and Language Process., Vol. 22, No. 12, 1931-1940, 2014.
doi:10.1109/TASLP.2014.2354236 Google Scholar
41. Muller, M., Fundamentals of Music Process, Springer International Publishing, 2015.
doi:10.1007/978-3-319-21945-5
42. Ester, M., H.-P. Kriegel, J. Sander, and X. Xu, "A density-based algorithm for discovering clusters in large spatial databases with noise," Proc. of the 2nd Int. Conf. on Knowledge Discovery and Data Mining, ser. KDD'96, 226-231, AAAI Press, 1996. Google Scholar
43. Baglivo, J. A., , Mathematica Laboratories for Mathematical Statistics, Society for Industrial and Applied Mathematics, 2005. Google Scholar
44. Vishwanath, T. G., M. Parr, Z.-L. Shi, and S. Erlich, "Synchronization in mobile satellite systems using dual-chirp waveform,", Patent, U.S. Patent 6,418,158 B1, Jul. 9, 2002. Google Scholar
45. Torres, L. L. T., F. Roos, and C. Waldschmidt, "Simulator design for interference analysis in complex automotive multi-user traffic scenarios," IEEE Radar Conf. (RadarConf20), 1-6, 2020. Google Scholar
46., Ettus Research. USRP. X300 and X310X Series. Google Scholar