Vol. 127
Latest Volume
All Volumes
PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-11-25
Preamble-Based Synchronization for Communication-Assisted Chirp Sequence Radar
By
Progress In Electromagnetics Research C, Vol. 127, 31-48, 2022
Abstract
Chirp sequence has been adopted in automotive applications for its simple generation and flexible integration within radar-centric systems. Besides, recent studies have shown its ability to carry data between communicating vehicles in the surroundings. Since the parameters adopted from current automotive radar sensors can differ at the transmitter side dependent on the automotive supplier, the carrier alignment of the communication receiver of one of the communicated nodes might not concur with the one in the transmitter. This paper presents a novel two-stage synchronization method for communication-assisted chirp sequence (CaCS) signals. The proposed synchronization method applies a sequence of up- and down-chirp as a preamble to estimate frequency and time offsets during the transmission. The suggested synchronization scheme supports partial chirp modulation systems and can be adapted for similar radar-centric systems that employ chirp modulation. The former stage performs a coarse synchronization, reallocates the receive carrier frequency, and corrects eventual time offsets between the communication receiver from one CaCS-node and the transmitter of another node. The carrier allocation at the communication receiver side is based on a combination of spectrum sensing via short-time Fourier transforms and image processing to estimate the transmitting signal pattern (slope, frequency offset, and delay). The latter stage, in its turn, relies on range-Doppler estimation to perform a fine correction of time and frequency offsets and compensates residual offsets of the coarse synchronization stage. Furthermore, the paper analyzes the case of a multi-user scenario with mutual interference between the signals that affects the synchronization and communication data detection. Besides, measurements are provided based on two completely unsynchronized software-defined radios to validate the proposed method. The study also illustrates the influence of the signal-to-noise ratio on the proposed method and verifies it with simulations in MATLAB. As a result, the offsets at the investigated CaCS-node are returned to recover the transmitted data correctly.
Citation
Mohamad Basim Alabd Benjamin Nuss Lucas Giroto de Oliveira Yueheng Li Axel Diewald Thomas Zwick , "Preamble-Based Synchronization for Communication-Assisted Chirp Sequence Radar," Progress In Electromagnetics Research C, Vol. 127, 31-48, 2022.
doi:10.2528/PIERC22072203
http://www.jpier.org/PIERC/pier.php?paper=22072203
References

1. Roos, F., J. Bechter, C. Knill, B. Schweizer, and C. Waldschmidt, "Radar sensors for autonomous driving: Modulation schemes and interference mitigation," IEEE Microw. Mag., Vol. 20, No. 9, 58-72, 2019.
doi:10.1109/MMM.2019.2922120

2. Hakobyan, G. and B. Yang, "High-performance automotive radar: A review of signal processing algorithms and modulation schemes," IEEE Signal Process. Mag., Vol. 36, No. 5, 32-44, 2019.
doi:10.1109/MSP.2019.2911722

3. Waldschmidt, C., J. Hasch, and W. Menzel, "Automotive radar --- From first efforts to future systems," IEEE J. Microw., Vol. 1, No. 1, 135-148, 2021.
doi:10.1109/JMW.2020.3033616

4. Bechter, J., F. Roos, M. Rahman, and C. Waldschmidt, "Automotive radar interference mitigation using a sparse sampling approach," Proc. Eur. Radar Conf. (EURAD), 90-93, 2017.

5. Aydogdu, C., M. F. Keskin, N. Garcia, H. Wymeersch, and D. W. Bliss, "Radchat: Spectrum sharing for automotive radar interference mitigation," IEEE Trans. Intell. Transp. Sys., Vol. 22, No. 1, 416-429, 2021.
doi:10.1109/TITS.2019.2959881

6. Aydogdu, C., M. F. Keskin, G. K. Carvajal, O. Eriksson, H. Hellsten, H. Herbertsson, E. Nilsson, M. Rydstrom, K. Vanas, and H. Wymeersch, "Radar interference mitigation for automated driving: Exploring proactive strategies," IEEE Signal Process. Mag., Vol. 37, No. 4, 72-84, 2020.
doi:10.1109/MSP.2020.2969319

7. Al-Hourani, A., R. J. Evans, S. Kandeepan, B. Moran, and H. Eltom, "Stochastic geometry methods for modeling automotive radar interference," IEEE Transactions on Intelligent Transportation Systems, Vol. 19, No. 2, 333-344, 2018.
doi:10.1109/TITS.2016.2632309

8. IEEE Veh. Tech. Mag., Special Issue on V2V Communications 2(4), Dec. 2007.

9. Karagiannis, G., O. Altintas, E. Ekici, G. Heijenk, B. Jarupan, K. Lin, and T. Weil, "Vehicular networking: A survey and tutorial on requirements, architectures, challenges, standards and solutions," IEEE Communications Surveys Tutorials, Vol. 13, No. 4, 584-616, 2011.
doi:10.1109/SURV.2011.061411.00019

10. 3GPP Service requirements for enhanced V2X scenarios (3GPP TS 22.186 version 15.3.0 Release 15), 2020.

11. IEEE, "IEEE Standard for Information technology --- Local and metropolitan area networks --- Specific requirements --- Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 6: Wireless Access in Vehicular Environments,", IEEE Std 802.11p-2010 (Amendment to IEEE Std 802.11-2007), 1-51, 2010.

12. Manolakis, K. and W. Xu, "Time synchronization for multi-link D2D/V2X communication," Proc. IEEE 89th Veh. Technol. Conf. (VTC-Fall), 1-6, 2016.

13. ETSI, "Intelligent Transport Systems (ITS); Performance Evaluation of Self-Organizing TDMA as Medium Access Control Method Applied to ITS,", Access Layer Part, 2011-2012.

14. Sturm, C. and W. Wiesbeck, "Waveform design and signal processing aspects for fusion of wireless communications and radar sensing," Proc. IEEE, Vol. 99, No. 7, 1236-1259, 2011.
doi:10.1109/JPROC.2011.2131110

15. De Oliveira, L. G., B. Nuss, M. B. Alabd, A. Diewald, M. Pauli, and T. Zwick, "Joint radar-communication systems: Modulation schemes and system design," IEEE Trans. Microw. Theory Techn., Mar. 2022.

16. Hassanien, A., M. G. Amin, E. Aboutanios, and B. Himed, "Dual-function radar communication systems: A solution to the spectrum congestion problem," IEEE Signal Process. Mag., Vol. 36, No. 5, 115-126, 2019.
doi:10.1109/MSP.2019.2900571

17. Sit, Y. L., C. Sturm, T. Zwick, L. Reichardt, and W. Wiesbeck, "The OFDM joint radar-communication system: An overview," The 3rd Int. Conf. on Adv. in Satell. and Space Commun., SPACOMM 2011, 69-74, Budapest, Hungary, Apr. 17-22, 2011.

18. Braun, K. M. OFDM radar algorithms in mobile communication networks, Ph.D. dissertation, Karlsruher Institut fur Technologie (KIT), 2014.

19. De Oliveira, L. G., M. B. Alabd, B. Nuss, and T. Zwick, "An OCDM radar-communication system," 2020 14th Eur. Conf. Antennas Propag., 1-5, 2020.

20. De Oliveira, L. G., B. Nuss, M. B. Alabd, Y. Li, L. Yu, and T. Zwick, "MIMO-OCDM-based joint radar sensing and communication," 2021 15th Eur. Conf. Antennas Propag., 1-5, 2021.

21. Schmidl, T. and D. Cox, "Robust frequency and timing synchronization for OFDM," IEEE Trans. Commun., Vol. 45, No. 12, 1613-1621, 1997.
doi:10.1109/26.650240

22. Ouyang, X. Digital signal processing for fiber-optic communication systems, Ph.D. dissertation, University College Cork, Ireland, 2017.

23., , TI, AWR2243 Single-Chip 76- to 81-GHz FMCW Transceiver, 2020.

24. Barrenechea, P., F. Elferink, and J. Janssen, "FMCW radar with broadband communication capability," Proc. Eur. Radar Conf. (EURAD), 130-133, 2007.

25. Scheiblhofer, W., R. Feger, A. Haderer, and A. Stelzer, "Method to embed a data-link on FMCW chirps for communication between cooperative 77-GHz radar stations," Proc. Eur. Radar Conf. (EURAD), 181-184, 2015.

26. Lampel, F., R. F. Tigrek, A. Alvarado, and F. M. Willems, "A performance enhancement technique for a joint FMCW RadCom system," Proc. Eur. Radar Conf. (EURAD), 169-172, 2019.

27. Dwivedi, S., A. N. Barreto, P. Sen, and G. Fettweis, "Target detection in joint frequency modulated continuous wave (FMCW) radar-communication system," Proc. 16th Int. Symp. on Wireless Commun. Syst. (ISWCS), 277-282, 2019.

28. Dwivedi, S., M. Zoli, A. N. Barreto, P. Sen, and G. Fettweis, "Secure joint communications and sensing using chirp modulation," 2nd 6G Wireless Summit (6G SUMMIT), 1-5, 2020.

29. Alabd, M. B., B. Nuss, C. Winkler, and T. Zwick, "Partial chirp modulation technique for chirp sequence based radar communications," Proc. Eur. Radar Conf. (EURAD), 173-176, 2019.

30. Lampel, F., F. Uysal, F. Tigrek, S. Orru, A. Alvarado, F. Willems, and A. Yarovoy, "System level synchronization of phase-coded FMCW automotive radars for RadCom," 2020 14th Eur. Conf. Antennas Propag., 1-5, 2020.

31. Bernier, C., F. Dehmas, and N. Deparis, "Low complexity lora frame synchronization for ultra-low power software-defined radios," IEEE Trans. Commun., Vol. 68, No. 5, 3140-3152, 2020.
doi:10.1109/TCOMM.2020.2974464

32. Martinez, A. B., A. Kumar, M. Chafii, and G. Fettweis, "A chirp-based frequency synchronization approach for flat fading channels," 2020 2nd 6G Wireless Summit (6G SUMMIT), 1-5, 2020.

33. Aydogdu, C., M. F. Keskin, and H. Wymeersch, "Automotive radar interference mitigation via multi-hop cooperative radar communications," 2020 17th European Radar Conference (EuRAD), 270-273, 2021.
doi:10.1109/EuRAD48048.2021.00076

34. Winkler, V., "Novel waveform generation principle for short-range FMCW-radars," Proc. German Microw. Conf., 1-4, 2009.

35. Kronauge, M. and H. Rohling, "New chirp sequence radar waveform," IEEE Trans. Aerosp. Electron. Syst., Vol. 50, No. 4, 2870-2877, 2014.
doi:10.1109/TAES.2014.120813

36., , TI, LMX2491 6.4-GHz Low Noise RF PLL With Ramp/ChirpGeneration, 2017.
doi:10.1109/TAES.2014.120813

37. Winkler, V., "Range doppler detection for automotive FMCW radars," Proc. Eur. Radar Conf. (EURAD), 166-169, 2007.

38. Alabd, M. B., L. G. de Oliveira, B. Nuss, W. Wiesbeck, and T. Zwick, "Time-frequency shift modulation for chirp sequence based radar communications," Proc. IEEE MTT-S Int. Conf. on Microw. for Intell. Mobility (ICMIM), 1-4, 2020.

39. Alabd, M. B., B. Nuss, L. G. de Oliveira, A. Diewald, Y. Li, and T. Zwick, "Modified pulse position modulation for joint radar communication based on chirp sequence," IEEE Microwave and Wireless Components Letters, 1-4, 2022.

40. Krawczyk, M. and T. Gerkmann, "STFT phase reconstruction in voiced speech for an improved single-channel speech enhancement," IEEE/ACM Trans. on Audio, Speech, and Language Process., Vol. 22, No. 12, 1931-1940, 2014.
doi:10.1109/TASLP.2014.2354236

41. Muller, M., Fundamentals of Music Process, Springer International Publishing, 2015.
doi:10.1007/978-3-319-21945-5

42. Ester, M., H.-P. Kriegel, J. Sander, and X. Xu, "A density-based algorithm for discovering clusters in large spatial databases with noise," Proc. of the 2nd Int. Conf. on Knowledge Discovery and Data Mining, ser. KDD'96, 226-231, AAAI Press, 1996.

43. Baglivo, J. A., , Mathematica Laboratories for Mathematical Statistics, Society for Industrial and Applied Mathematics, 2005.

44. Vishwanath, T. G., M. Parr, Z.-L. Shi, and S. Erlich, "Synchronization in mobile satellite systems using dual-chirp waveform,", Patent, U.S. Patent 6,418,158 B1, Jul. 9, 2002.

45. Torres, L. L. T., F. Roos, and C. Waldschmidt, "Simulator design for interference analysis in complex automotive multi-user traffic scenarios," IEEE Radar Conf. (RadarConf20), 1-6, 2020.

46., , Ettus Research. USRP. X300 and X310X Series.